X-Git-Url: https://git.rvb.name/rtl-433.git/blobdiff_plain/7797ca508c68bb2795cac6e8996f04a5b445220a..337eb4ba945097205fbb6a3ca7912fb0697092d1:/src/rtl_433.c~?ds=inline diff --git a/src/rtl_433.c~ b/src/rtl_433.c~ old mode 100755 new mode 100644 index c997acb..98685ac --- a/src/rtl_433.c~ +++ b/src/rtl_433.c~ @@ -20,114 +20,63 @@ * along with this program. If not, see . */ - -/* Currently this can decode the temperature and id from Rubicson sensors - * - * the sensor sends 36 bits 12 times pwm modulated - * the data is grouped into 9 nibles - * [id0] [id1], [unk0] [temp0], [temp1] [temp2], [unk1] [unk2], [unk3] - * - * The id changes when the battery is changed in the sensor. - * unk0 is always 1 0 0 0, most likely 2 channel bits as the sensor can recevice 3 channels - * unk1-3 changes and the meaning is unknown - * temp is 12 bit signed scaled by 10 - * - * The sensor can be bought at Kjell&Co - */ - -/* Prologue sensor protocol - * - * the sensor sends 36 bits 7 times, before the first packet there is a pulse sent - * the packets are pwm modulated - * - * the data is grouped in 9 nibles - * [id0] [rid0] [rid1] [data0] [temp0] [temp1] [temp2] [humi0] [humi1] - * - * id0 is always 1001,9 - * rid is a random id that is generated when the sensor starts, could include battery status - * the same batteries often generate the same id - * data(3) is 0 the battery status, 1 ok, 0 low, first reading always say low - * data(2) is 1 when the sensor sends a reading when pressing the button on the sensor - * data(1,0)+1 forms the channel number that can be set by the sensor (1-3) - * temp is 12 bit signed scaled by 10 - * humi0 is always 1100,c if no humidity sensor is available - * humi1 is always 1100,c if no humidity sensor is available - * - * The sensor can be bought at Clas Ohlson - */ - -#include -#include -#include -#include -#include -#include - -#ifndef _WIN32 -#include -#else -#include -#include -#include -#include "getopt/getopt.h" -#endif - #include "rtl-sdr.h" - -#define DEFAULT_SAMPLE_RATE 250000 -#define DEFAULT_FREQUENCY 433920000 -#define DEFAULT_HOP_TIME (60*10) -#define DEFAULT_HOP_EVENTS 2 -#define DEFAULT_ASYNC_BUF_NUMBER 32 -#define DEFAULT_BUF_LENGTH (16 * 16384) -#define DEFAULT_LEVEL_LIMIT 10000 -#define DEFAULT_DECIMATION_LEVEL 0 -#define MINIMAL_BUF_LENGTH 512 -#define MAXIMAL_BUF_LENGTH (256 * 16384) -#define FILTER_ORDER 1 -#define MAX_PROTOCOLS 10 -#define SIGNAL_GRABBER_BUFFER (12 * DEFAULT_BUF_LENGTH) -#define BITBUF_COLS 34 -#define BITBUF_ROWS 50 +#include "rtl_433.h" +#include "rtl_433_devices.h" static int do_exit = 0; -static int do_exit_async=0, frequencies=0, events=0; +static int do_exit_async = 0, frequencies = 0, events = 0; uint32_t frequency[MAX_PROTOCOLS]; time_t rawtime_old; int flag; -uint32_t samp_rate=DEFAULT_SAMPLE_RATE; +uint32_t samp_rate = DEFAULT_SAMPLE_RATE; static uint32_t bytes_to_read = 0; static rtlsdr_dev_t *dev = NULL; static uint16_t scaled_squares[256]; -static int debug_output = 0; static int override_short = 0; static int override_long = 0; +int debug_output = 0; -/* Supported modulation types */ -#define OOK_PWM_D 1 /* Pulses are of the same length, the distance varies */ -#define OOK_PWM_P 2 /* The length of the pulses varies */ +int debug_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) { + int i,j,k; + int rows_used[BITBUF_ROWS]; + int col_max = 0; + int row_cnt = 0; + // determine what part of bb[][] has non-zero data to avoid + // outputting lots of empty rows + for (i=0 ; i 0 ; j--) { + if (bb[i][j] != 0) + break; + } + if (j != 0) { + rows_used[i] = 1; + row_cnt++; + if (j > col_max) + col_max = j; + } else { + rows_used[i] = 0; + } + } -typedef struct { - unsigned int id; - char name[256]; - unsigned int modulation; - unsigned int short_limit; - unsigned int long_limit; - unsigned int reset_limit; - int (*json_callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS]) ; -} r_device; + if (!row_cnt) { + fprintf(stderr, "debug_callback: empty data array\n"); + return 0; + } -static int debug_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - int i,j,k; fprintf(stderr, "\n"); for (i=0 ; i=0 ; k--) { if (bb[i][j] & 1<>1; - payload[1] = bb[0][2]>>1 | ((bb[0][1]&1) << 7 ); - payload[2] = bb[0][3]>>1 | ((bb[0][2]&1) << 7 ); - payload[3] = bb[0][4]>>1 | ((bb[0][3]&1) << 7 ); - - received_crc8 = (bb[0][5]>>1) | ((bb[0][4]&1) << 7 ); - - payload_crc8 = crc8(payload,4); - - if (payload_crc8 != received_crc8) return 0; - - wh2_id = (payload[0] << 4) + (payload[1] >> 4); - wh2_temp = ((payload[1] & 0x7) << 8) + payload[2]; - if (payload[1] & 0x8) { - wh2_temp = -wh2_temp; - } - wh2_temp = wh2_temp/10; - - wh2_humidity = payload[3]; - - fprintf(stdout, "SENSOR:TYPE=WH2,ID=%X,HUMIDITY=%g,TEMPERATURE=%g\n",wh2_id,wh2_humidity,wh2_temp); - - return 1; -} - -static int silvercrest_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - /* FIXME validate the received message better */ - if (bb[1][0] == 0xF8 && - bb[2][0] == 0xF8 && - bb[3][0] == 0xF8 && - bb[4][0] == 0xF8 && - bb[1][1] == 0x4d && - bb[2][1] == 0x4d && - bb[3][1] == 0x4d && - bb[4][1] == 0x4d) { - /* Pretty sure this is a Silvercrest remote */ - fprintf(stdout, "BUTTON:TYPE=SILVERCREST,CODE=%02x-%02x-%02x-%02x-%02x\n",bb[1][0],bb[0][1],bb[0][2],bb[0][3],bb[0][4]); - - if (debug_output) - debug_callback(bb); - - return 1; - } - return 0; -} - -static int rubicson_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - int temperature_before_dec; - int temperature_after_dec; - int16_t temp; - float ftemp; - - /* FIXME validate the received message better, figure out crc */ - if (bb[1][0] == bb[2][0] && bb[2][0] == bb[3][0] && bb[3][0] == bb[4][0] && - bb[4][0] == bb[5][0] && bb[5][0] == bb[6][0] && bb[6][0] == bb[7][0] && bb[7][0] == bb[8][0] && - bb[8][0] == bb[9][0] && (bb[5][0] != 0 && bb[5][1] != 0 && bb[5][2] != 0)) { - - /* Nible 3,4,5 contains 12 bits of temperature - * The temperature is signed and scaled by 10 */ - temp = (int16_t)((uint16_t)(bb[0][1] << 12) | (bb[0][2] << 4)); - temp = temp >> 4; - ftemp = (float)temp/10; - - fprintf(stdout, "SENSOR:TYPE=RUBICSON,ID=%X,TEMPERATURE=%f\n",bb[0][0],ftemp); - - if (debug_output) - debug_callback(bb); - - return 1; - } - return 0; -} - -static int prologue_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - int rid; - - int16_t temp2; - float ftemp; - - /* FIXME validate the received message better */ - if (((bb[1][0]&0xF0) == 0x90 && (bb[2][0]&0xF0) == 0x90 && (bb[3][0]&0xF0) == 0x90 && (bb[4][0]&0xF0) == 0x90 && - (bb[5][0]&0xF0) == 0x90 && (bb[6][0]&0xF0) == 0x90) || - ((bb[1][0]&0xF0) == 0x50 && (bb[2][0]&0xF0) == 0x50 && (bb[3][0]&0xF0) == 0x50 && (bb[4][0]&0xF0) == 0x50)) { - - /* Prologue sensor */ - temp2 = (int16_t)((uint16_t)(bb[1][2] << 8) | (bb[1][3]&0xF0)); - temp2 = temp2 >> 4; - ftemp = (float)temp2/10; - rid = ((bb[1][0]&0x0F)<<4)|(bb[1][1]&0xF0)>>4; - fprintf(stdout, - "SENSOR:TYPE=PROLOGUE,BUTTON=%d,BATTERY=%s,TEMPERATURE=%f,HUMIDITY=%d,CHANNEL=%d,ID=%d,RID=%02x\n", - bb[1][1]&0x04?1:0, - bb[1][1]&0x08?"Ok":"Low", - ftemp, - ((bb[1][3]&0x0F)<<4)|(bb[1][4]>>4), - (int)((bb[1][1]&0x03)+1), - (int)((bb[1][0]&0xF0)>>4), - rid); - - if (debug_output) - debug_callback(bb); - - return 1; - } - return 0; -} - -static int waveman_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - /* Two bits map to 2 states, 0 1 -> 0 and 1 1 -> 1 */ - int i; - uint8_t nb[3] = {0}; - - if (((bb[0][0]&0x55)==0x55) && ((bb[0][1]&0x55)==0x55) && ((bb[0][2]&0x55)==0x55) && ((bb[0][3]&0x55)==0x00)) { - for (i=0 ; i<3 ; i++) { - nb[i] |= ((bb[0][i]&0xC0)==0xC0) ? 0x00 : 0x01; - nb[i] |= ((bb[0][i]&0x30)==0x30) ? 0x00 : 0x02; - nb[i] |= ((bb[0][i]&0x0C)==0x0C) ? 0x00 : 0x04; - nb[i] |= ((bb[0][i]&0x03)==0x03) ? 0x00 : 0x08; - } - - fprintf(stdout, - "BUTTON:TYPE=WAVEMAN,ID=%c,CHANNEL=%d,BUTTON=%d,STATE=%s\n", - 'A'+nb[0], - (int)((nb[1]>>2)+1), - (int)((nb[1]&3)+1), - ((nb[2]==0xe) ? "on" : "off")); - - if (debug_output) - debug_callback(bb); - - return 1; - } - return 0; -} - -static int steffen_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - - if (bb[0][0]==0x00 && ((bb[1][0]&0x07)==0x07) && bb[1][0]==bb[2][0] && bb[2][0]==bb[3][0]) { - - fprintf(stdout, "BUTTON:TYPE=STEFFAN,CODE=%d%d%d%d%d,",(bb[1][0]&0x80)>>7, (bb[1][0]&0x40)>>6, (bb[1][0]&0x20)>>5, (bb[1][0]&0x10)>>4, (bb[1][0]&0x08)>>3); - - if ((bb[1][2]&0x0f)==0x0e) - fprintf(stdout, "BUTTON=A,"); - else if ((bb[1][2]&0x0f)==0x0d) - fprintf(stdout, "BUTTON=B,"); - else if ((bb[1][2]&0x0f)==0x0b) - fprintf(stdout, "BUTTON=C,"); - else if ((bb[1][2]&0x0f)==0x07) - fprintf(stdout, "BUTTON=D,"); - else if ((bb[1][2]&0x0f)==0x0f) - fprintf(stdout, "BUTTON=ALL,"); - else - fprintf(stdout, "BUTTON=UNKNOWN,"); - - if ((bb[1][2]&0xf0)==0xf0) { - fprintf(stdout, "STATE=OFF\n"); - } else { - fprintf(stdout, "STATE=ON\n"); - } - - if (debug_output) - debug_callback(bb); - - return 1; - } - return 0; -} - - -uint16_t AD_POP(uint8_t bb[BITBUF_COLS], uint8_t bits, uint8_t bit) { - uint16_t val = 0; - uint8_t i, byte_no, bit_no; - for (i=0;i=1&&dec[0]<=3?types[dec[0]-1]:"?",dec[1],dec[2],dec[3]|dec[4]<<8,dec[5]|dec[6]<<8,dec[7]|dec[8]<<8); - - return 1; -} - -static int ws2000_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - // based on http://www.dc3yc.privat.t-online.de/protocol.htm - uint8_t dec[13]; - uint8_t nibbles=0; - uint8_t bit=11; // preamble - char* types[]={"!AS3", "AS2000/ASH2000/S2000/S2001A/S2001IA/ASH2200/S300IA", "!S2000R", "!S2000W", "S2001I/S2001ID", "!S2500H", "!Pyrano", "!KS200/KS300"}; - uint8_t check_calculated=0, sum_calculated=0; - uint8_t i; - uint8_t stopbit; - uint8_t sum_received; - - dec[0] = AD_POP (bb[0], 4, bit); bit+=4; - stopbit= AD_POP (bb[0], 1, bit); bit+=1; - if (!stopbit) { -//fprintf(stderr, "!stopbit\n"); - return 0; - } - check_calculated ^= dec[0]; - sum_calculated += dec[0]; - - // read nibbles with stopbit ... - for (i = 1; i <= (dec[0]==4?12:8); i++) { - dec[i] = AD_POP (bb[0], 4, bit); bit+=4; - stopbit= AD_POP (bb[0], 1, bit); bit+=1; - if (!stopbit) { -//fprintf(stderr, "!stopbit %i\n", i); - return 0; - } - check_calculated ^= dec[i]; - sum_calculated += dec[i]; - nibbles++; - } - - if (check_calculated) { -//fprintf(stderr, "check_calculated (%d) != 0\n", check_calculated); - return 0; - } - - // Read sum - sum_received = AD_POP (bb[0], 4, bit); bit+=4; - sum_calculated+=5; - sum_calculated&=0xF; - if (sum_received != sum_calculated) { -//fprintf(stderr, "sum_received (%d) != sum_calculated (%d) ", sum_received, sum_calculated); - return 0; - } - -//for (i = 0; i < nibbles; i++) fprintf(stderr, "%02X ", dec[i]); fprintf(stderr, "\n"); - - fprintf(stdout, "SENSOR:TYPE=ELV-WS-2000,MODEL=%s,CODE=%d,TEMPERATURE=%s%d.%d,HUMIDITY=%d.%d",dec[0]<=7?types[dec[0]]:"?",dec[1]&7,dec[1]&8?"-":"",dec[4]*10+dec[3],dec[2],dec[7]*10+dec[6], dec[5]); - if(dec[0]==4) { - fprintf(stdout, "PRESSURE=%d\n", 200+dec[10]*100+dec[9]*10+dec[8]); - } else { - fprintf(stdout, "\n"); - } - - return 1; -} - -// ** Acurite 5n1 functions ** - -const float acurite_winddirections[] = - { 337.5, 315.0, 292.5, 270.0, 247.5, 225.0, 202.5, 180, - 157.5, 135.0, 112.5, 90.0, 67.5, 45.0, 22.5, 0.0 }; - -static int acurite_raincounter = 0; - -static int acurite_crc(uint8_t row[BITBUF_COLS], int cols) { - // sum of first n-1 bytes modulo 256 should equal nth byte - int i; - int sum = 0; - for ( i=0; i < cols; i++) - sum += row[i]; - if ( sum % 256 == row[cols] ) - return 1; - else - return 0; -} - -static int acurite_detect(uint8_t *pRow) { - int i; - if ( pRow[0] != 0x00 ) { - // invert bits due to wierd issue - for (i = 0; i < 8; i++) - pRow[i] = ~pRow[i] & 0xFF; - pRow[0] |= pRow[8]; // fix first byte that has mashed leading bit - - if (acurite_crc(pRow, 7)) - return 1; // passes crc check - } - return 0; -} - -static float acurite_getTemp (uint8_t highbyte, uint8_t lowbyte) { - // range -40 to 158 F - int highbits = (highbyte & 0x0F) << 7 ; - int lowbits = lowbyte & 0x7F; - int rawtemp = highbits | lowbits; - float temp = (rawtemp - 400) / 10.0; - return temp; -} - -static int acurite_getWindSpeed (uint8_t highbyte, uint8_t lowbyte) { - // range: 0 to 159 kph - int highbits = ( highbyte & 0x1F) << 3; - int lowbits = ( lowbyte & 0x70 ) >> 4; - int speed = highbits | lowbits; - return speed; -} - -static float acurite_getWindDirection (uint8_t byte) { - // 16 compass points, ccw from (NNW) to 15 (N) - int direction = byte & 0x0F; - return acurite_winddirections[direction]; -} - -static int acurite_getHumidity (uint8_t byte) { - // range: 1 to 99 %RH - int humidity = byte & 0x7F; - return humidity; -} - -static int acurite_getRainfallCounter (uint8_t highbyte, uint8_t lowbyte) { - // range: 0 to 99.99 in, 0.01 in incr., rolling counter? - int highbits = (highbyte & 0x3F) << 7 ; - int lowbits = lowbyte & 0x7F; - int raincounter = highbits | lowbits; - return raincounter; -} - -static int acurite5n1_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) { - // acurite 5n1 weather sensor decoding for rtl_433 - // Jens Jensen 2014 - int i; - uint8_t *buf = NULL; - // run through rows til we find one with good crc (brute force) - for (i=0; i < BITBUF_ROWS; i++) { - if (acurite_detect(bb[i])) { - buf = bb[i]; - break; // done - } - } - - if (buf) { - // decode packet here - fprintf(stdout, "SENSOR:TYPE=ACURITE"); - if (debug_output) { - for (i=0; i < 8; i++) - fprintf(stderr, "%02X ", buf[i]); - fprintf(stderr, "CRC OK\n"); - } - - if ((buf[2] & 0x0F) == 1) { - // wind speed, wind direction, rainfall - - float rainfall = 0.00; - int raincounter = 0; - if (acurite_raincounter > 0) { - // track rainfall difference after first run - raincounter = acurite_getRainfallCounter(buf[5], buf[6]); - rainfall = ( raincounter - acurite_raincounter ) * 0.01; - } else { - // capture starting counter - acurite_raincounter = raincounter; - } - - fprintf(stdout, ",WINDSPEED=%d", - acurite_getWindSpeed(buf[3], buf[4])); - fprintf(stdout, ",WINDDIRECTION=%0.1f", - acurite_getWindDirection(buf[4])); - fprintf(stdout, ",RAINGAUGE: %0.2f\n", rainfall); - - } else if ((buf[2] & 0x0F) == 8) { - // wind speed, temp, RH - fprintf(stdout, ",WINDSPEED=%d", - acurite_getWindSpeed(buf[3], buf[4])); - fprintf(stdout, ",TEMPERATURE=%2.1f", - acurite_getTemp(buf[4], buf[5])); - fprintf(stdout, ",HUMIDITY=%d\n", - acurite_getHumidity(buf[6])); - } - } - //if (debug_output) - // debug_callback(bb); - return 1; -} - - -// timings based on samp_rate=1024000 -r_device rubicson = { - /* .id = */ 1, - /* .name = */ "Rubicson Temperature Sensor", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 1744/4, - /* .long_limit = */ 3500/4, - /* .reset_limit = */ 5000/4, - /* .json_callback = */ &rubicson_callback, -}; - -r_device prologue = { - /* .id = */ 2, - /* .name = */ "Prologue Temperature Sensor", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 3500/4, - /* .long_limit = */ 7000/4, - /* .reset_limit = */ 15000/4, - /* .json_callback = */ &prologue_callback, -}; - -r_device silvercrest = { - /* .id = */ 3, - /* .name = */ "Silvercrest Remote Control", - /* .modulation = */ OOK_PWM_P, - /* .short_limit = */ 600/4, - /* .long_limit = */ 5000/4, - /* .reset_limit = */ 15000/4, - /* .json_callback = */ &silvercrest_callback, -}; - -r_device tech_line_fws_500 = { - /* .id = */ 4, - /* .name = */ "Tech Line FWS-500 Sensor", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 3500/4, - /* .long_limit = */ 7000/4, - /* .reset_limit = */ 15000/4, - // /* .json_callback = */ &rubicson_callback, -}; - -r_device generic_hx2262 = { - /* .id = */ 5, - /* .name = */ "Window/Door sensor", - /* .modulation = */ OOK_PWM_P, - /* .short_limit = */ 1300/4, - /* .long_limit = */ 10000/4, - /* .reset_limit = */ 40000/4, - // /* .json_callback = */ &silvercrest_callback, -}; - -r_device technoline_ws9118 = { - /* .id = */ 6, - /* .name = */ "Technoline WS9118", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 1800/4, - /* .long_limit = */ 3500/4, - /* .reset_limit = */ 15000/4, - /* .json_callback = */ &debug_callback, -}; - - -r_device elv_em1000 = { - /* .id = */ 7, - /* .name = */ "ELV EM 1000", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 750/4, - /* .long_limit = */ 7250/4, - /* .reset_limit = */ 30000/4, - /* .json_callback = */ &em1000_callback, -}; - -r_device elv_ws2000 = { - /* .id = */ 8, - /* .name = */ "ELV WS 2000", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ (602+(1155-602)/2)/4, - /* .long_limit = */ ((1755635-1655517)/2)/4, // no repetitions - /* .reset_limit = */ ((1755635-1655517)*2)/4, - /* .json_callback = */ &ws2000_callback, -}; - -r_device waveman = { - /* .id = */ 6, - /* .name = */ "Waveman Switch Transmitter", - /* .modulation = */ OOK_PWM_P, - /* .short_limit = */ 1000/4, - /* .long_limit = */ 8000/4, - /* .reset_limit = */ 30000/4, - /* .json_callback = */ &waveman_callback, -}; - -r_device steffen = { - /* .id = */ 9, - /* .name = */ "Steffen Switch Transmitter", - /* .modulation = */ OOK_PWM_D, - /* .short_limit = */ 140, - /* .long_limit = */ 270, - /* .reset_limit = */ 1500, - /* .json_callback = */ &steffen_callback, -}; - -r_device acurite5n1 = { - /* .id = */ 10, - /* .name = */ "Acurite 5n1 Weather Station", - /* .modulation = */ OOK_PWM_P, - /* .short_limit = */ 75, - /* .long_limit = */ 220, - /* .reset_limit = */ 20000, - /* .json_callback = */ &acurite5n1_callback, -}; - -r_device wh2 = { - /* .id = */ 11, - /* .name = */ "WH2 Weather Station", - /* .modulation = */ OOK_PWM_P, - /* .short_limit = */ 150, - /* .long_limit = */ 400, - /* .reset_limit = */ 20000, - /* .json_callback = */ &wh2_callback, -}; - struct protocol_state { - int (*callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS]); + int (*callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]); /* bits state */ int bits_col_idx; @@ -718,7 +101,7 @@ struct protocol_state { int bits_bit_col_idx; uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS]; int16_t bits_per_row[BITBUF_ROWS]; - int bit_rows; + int bit_rows; unsigned int modulation; /* demod state */ @@ -740,13 +123,12 @@ struct protocol_state { }; - struct dm_state { FILE *file; int save_data; int32_t level_limit; int32_t decimation_level; - int16_t filter_buffer[MAXIMAL_BUF_LENGTH+FILTER_ORDER]; + int16_t filter_buffer[MAXIMAL_BUF_LENGTH + FILTER_ORDER]; int16_t* f_buf; int analyze; int debug_mode; @@ -764,33 +146,31 @@ struct dm_state { }; -void usage(void) -{ +void usage(void) { fprintf(stderr, - "rtl_433, an ISM band generic data receiver for RTL2832 based DVB-T receivers\n\n" - "Usage:\t[-d device_index (default: 0)]\n" - "\t[-g gain (default: 0 for auto)]\n" - "\t[-a analyze mode, print a textual description of the signal]\n" - "\t[-t signal auto save, use it together with analyze mode (-a -t)\n" - "\t[-l change the detection level used to determine pulses (0-3200) default: %i]\n" - "\t[-f [-f...] receive frequency[s], default: %i Hz]\n" - "\t[-s samplerate (default: %i Hz)]\n" - "\t[-S force sync output (default: async)]\n" - "\t[-r read data from file instead of from a receiver]\n" - "\t[-p ppm_error (default: 0)]\n" - "\t[-r test file name (indata)]\n" - "\t[-m test file mode (0 rtl_sdr data, 1 rtl_433 data)]\n" - "\t[-D print debug info on event\n" - "\t[-z override short value\n" - "\t[-x override long value\n" - "\tfilename (a '-' dumps samples to stdout)\n\n", DEFAULT_LEVEL_LIMIT, DEFAULT_FREQUENCY, DEFAULT_SAMPLE_RATE); + "rtl_433, an ISM band generic data receiver for RTL2832 based DVB-T receivers\n\n" + "Usage:\t[-d device_index (default: 0)]\n" + "\t[-g gain (default: 0 for auto)]\n" + "\t[-a analyze mode, print a textual description of the signal]\n" + "\t[-t signal auto save, use it together with analyze mode (-a -t)\n" + "\t[-l change the detection level used to determine pulses (0-3200) default: %i]\n" + "\t[-f [-f...] receive frequency[s], default: %i Hz]\n" + "\t[-s samplerate (default: %i Hz)]\n" + "\t[-S force sync output (default: async)]\n" + "\t[-r read data from file instead of from a receiver]\n" + "\t[-p ppm_error (default: 0)]\n" + "\t[-r test file name (indata)]\n" + "\t[-m test file mode (0 rtl_sdr data, 1 rtl_433 data)]\n" + "\t[-D print debug info on event\n" + "\t[-z override short value\n" + "\t[-x override long value\n" + "\tfilename (a '-' dumps samples to stdout)\n\n", DEFAULT_LEVEL_LIMIT, DEFAULT_FREQUENCY, DEFAULT_SAMPLE_RATE); exit(1); } #ifdef _WIN32 BOOL WINAPI -sighandler(int signum) -{ +sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stderr, "Signal caught, exiting!\n"); do_exit = 1; @@ -800,9 +180,12 @@ sighandler(int signum) return FALSE; } #else -static void sighandler(int signum) -{ - fprintf(stderr, "Signal caught, exiting!\n"); +static void sighandler(int signum) { + if (signum == SIGPIPE) { + signal(SIGPIPE,SIG_IGN); + } else { + fprintf(stderr, "Signal caught, exiting!\n"); + } do_exit = 1; rtlsdr_cancel_async(dev); } @@ -811,8 +194,8 @@ static void sighandler(int signum) /* precalculate lookup table for envelope detection */ static void calc_squares() { int i; - for (i=0 ; i<256 ; i++) - scaled_squares[i] = (128-i) * (128-i); + for (i = 0; i < 256; i++) + scaled_squares[i] = (128 - i) * (128 - i); } /** This will give a noisy envelope of OOK/ASK signals @@ -821,21 +204,20 @@ static void calc_squares() { * @returns pointer to the input buffer */ -static void envelope_detect(unsigned char *buf, uint32_t len, int decimate) -{ +static void envelope_detect(unsigned char *buf, uint32_t len, int decimate) { uint16_t* sample_buffer = (uint16_t*) buf; unsigned int i; unsigned op = 0; - unsigned int stride = 1<bits_buffer, 0 ,BITBUF_ROWS*BITBUF_COLS); - memset(p->bits_per_row, 0 ,BITBUF_ROWS); + memset(p->bits_buffer, 0, BITBUF_ROWS * BITBUF_COLS); + memset(p->bits_per_row, 0, BITBUF_ROWS); p->bits_col_idx = 0; p->bits_bit_col_idx = 7; p->bits_row_idx = 0; @@ -843,14 +225,14 @@ static void demod_reset_bits_packet(struct protocol_state* p) { } static void demod_add_bit(struct protocol_state* p, int bit) { - p->bits_buffer[p->bits_row_idx][p->bits_col_idx] |= bit<bits_bit_col_idx; + p->bits_buffer[p->bits_row_idx][p->bits_col_idx] |= bit << p->bits_bit_col_idx; p->bits_bit_col_idx--; - if (p->bits_bit_col_idx<0) { + if (p->bits_bit_col_idx < 0) { p->bits_bit_col_idx = 7; p->bits_col_idx++; - if (p->bits_col_idx>BITBUF_COLS-1) { - p->bits_col_idx = BITBUF_COLS-1; -// fprintf(stderr, "p->bits_col_idx>%i!\n", BITBUF_COLS-1); + if (p->bits_col_idx > BITBUF_COLS - 1) { + p->bits_col_idx = BITBUF_COLS - 1; + // fprintf(stderr, "p->bits_col_idx>%i!\n", BITBUF_COLS-1); } } p->bits_per_row[p->bit_rows]++; @@ -860,33 +242,33 @@ static void demod_next_bits_packet(struct protocol_state* p) { p->bits_col_idx = 0; p->bits_row_idx++; p->bits_bit_col_idx = 7; - if (p->bits_row_idx>BITBUF_ROWS-1) { - p->bits_row_idx = BITBUF_ROWS-1; + if (p->bits_row_idx > BITBUF_ROWS - 1) { + p->bits_row_idx = BITBUF_ROWS - 1; //fprintf(stderr, "p->bits_row_idx>%i!\n", BITBUF_ROWS-1); } p->bit_rows++; - if (p->bit_rows > BITBUF_ROWS-1) - p->bit_rows -=1; + if (p->bit_rows > BITBUF_ROWS - 1) + p->bit_rows -= 1; } static void demod_print_bits_packet(struct protocol_state* p) { - int i,j,k; + int i, j, k; fprintf(stderr, "\n"); - for (i=0 ; ibit_rows+1 ; i++) { - fprintf(stderr, "[%02d] {%d} ",i, p->bits_per_row[i]); - for (j=0 ; j<((p->bits_per_row[i]+8)/8) ; j++) { - fprintf(stderr, "%02x ", p->bits_buffer[i][j]); + for (i = 0; i < p->bit_rows + 1; i++) { + fprintf(stderr, "[%02d] {%d} ", i, p->bits_per_row[i]); + for (j = 0; j < ((p->bits_per_row[i] + 8) / 8); j++) { + fprintf(stderr, "%02x ", p->bits_buffer[i][j]); } fprintf(stderr, ": "); - for (j=0 ; j<((p->bits_per_row[i]+8)/8) ; j++) { - for (k=7 ; k>=0 ; k--) { - if (p->bits_buffer[i][j] & 1<bits_per_row[i] + 8) / 8); j++) { + for (k = 7; k >= 0; k--) { + if (p->bits_buffer[i][j] & 1 << k) fprintf(stderr, "1"); else fprintf(stderr, "0"); } -// fprintf(stderr, "=0x%x ",demod->bits_buffer[i][j]); + // fprintf(stderr, "=0x%x ",demod->bits_buffer[i][j]); fprintf(stderr, " "); } fprintf(stderr, "\n"); @@ -896,21 +278,21 @@ static void demod_print_bits_packet(struct protocol_state* p) { } static void register_protocol(struct dm_state *demod, r_device *t_dev) { - struct protocol_state *p = calloc(1,sizeof(struct protocol_state)); - p->short_limit = (float)t_dev->short_limit/((float)DEFAULT_SAMPLE_RATE/(float)samp_rate); - p->long_limit = (float)t_dev->long_limit /((float)DEFAULT_SAMPLE_RATE/(float)samp_rate); - p->reset_limit = (float)t_dev->reset_limit/((float)DEFAULT_SAMPLE_RATE/(float)samp_rate); - p->modulation = t_dev->modulation; - p->callback = t_dev->json_callback; + struct protocol_state *p = calloc(1, sizeof (struct protocol_state)); + p->short_limit = (float) t_dev->short_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate); + p->long_limit = (float) t_dev->long_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate); + p->reset_limit = (float) t_dev->reset_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate); + p->modulation = t_dev->modulation; + p->callback = t_dev->json_callback; demod_reset_bits_packet(p); demod->r_devs[demod->r_dev_num] = p; demod->r_dev_num++; - fprintf(stderr, "Registering protocol[%02d] %s\n",demod->r_dev_num, t_dev->name); + fprintf(stderr, "Registering protocol[%02d] %s\n", demod->r_dev_num, t_dev->name); if (demod->r_dev_num > MAX_PROTOCOLS) - fprintf(stderr, "Max number of protocols reached %d\n",MAX_PROTOCOLS); + fprintf(stderr, "Max number of protocols reached %d\n", MAX_PROTOCOLS); } @@ -923,13 +305,13 @@ static unsigned int pulse_start = 0; static unsigned int pulse_end = 0; static unsigned int pulse_avg = 0; static unsigned int signal_start = 0; -static unsigned int signal_end = 0; -static unsigned int signal_pulse_data[4000][3] = {{0}}; +static unsigned int signal_end = 0; +static unsigned int signal_pulse_data[4000][3] = { + {0}}; static unsigned int signal_pulse_counter = 0; - static void classify_signal() { - unsigned int i,k, max=0, min=1000000, t; + unsigned int i, k, max = 0, min = 1000000, t; unsigned int delta, count_min, count_max, min_new, max_new, p_limit; unsigned int a[3], b[2], a_cnt[3], a_new[3], b_new[2]; unsigned int signal_distance_data[4000] = {0}; @@ -939,7 +321,7 @@ static void classify_signal() { if (!signal_pulse_data[0][0]) return; - for (i=0 ; i<1000 ; i++) { + for (i = 0; i < 1000; i++) { if (signal_pulse_data[i][0] > 0) { //fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\n", //i, signal_pulse_data[i][0], signal_pulse_data[i][1], @@ -950,96 +332,99 @@ static void classify_signal() { min = signal_pulse_data[i][2]; } } - t=(max+min)/2; + t = (max + min) / 2; //fprintf(stderr, "\n\nMax: %d, Min: %d t:%d\n", max, min, t); - delta = (max - min)*(max-min); + delta = (max - min)*(max - min); //TODO use Lloyd-Max quantizer instead - k=1; - while((k < 10) && (delta > 0)) { - min_new = 0; count_min = 0; - max_new = 0; count_max = 0; - - for (i=0 ; i < 1000 ; i++) { + k = 1; + while ((k < 10) && (delta > 0)) { + min_new = 0; + count_min = 0; + max_new = 0; + count_max = 0; + + for (i = 0; i < 1000; i++) { if (signal_pulse_data[i][0] > 0) { if (signal_pulse_data[i][2] < t) { min_new = min_new + signal_pulse_data[i][2]; count_min++; - } - else { + } else { max_new = max_new + signal_pulse_data[i][2]; count_max++; } } } - min_new = min_new / count_min; - max_new = max_new / count_max; + if (count_min != 0 && count_max != 0) { + min_new = min_new / count_min; + max_new = max_new / count_max; + } delta = (min - min_new)*(min - min_new) + (max - max_new)*(max - max_new); min = min_new; max = max_new; - t = (min + max)/2; + t = (min + max) / 2; - fprintf(stderr, "Iteration %d. t: %d min: %d (%d) max: %d (%d) delta %d\n", k,t, min, count_min, max, count_max, delta); + fprintf(stderr, "Iteration %d. t: %d min: %d (%d) max: %d (%d) delta %d\n", k, t, min, count_min, max, count_max, delta); k++; } - for (i=0 ; i<1000 ; i++) { + for (i = 0; i < 1000; i++) { if (signal_pulse_data[i][0] > 0) { //fprintf(stderr, "%d\n", signal_pulse_data[i][1]); } } /* 50% decision limit */ - if (max/min > 1) { + if (min != 0 && max / min > 1) { fprintf(stderr, "Pulse coding: Short pulse length %d - Long pulse length %d\n", min, max); signal_type = 2; } else { - fprintf(stderr, "Distance coding: Pulse length %d\n", (min+max)/2); + fprintf(stderr, "Distance coding: Pulse length %d\n", (min + max) / 2); signal_type = 1; } - p_limit = (max+min)/2; + p_limit = (max + min) / 2; /* Initial guesses */ a[0] = 1000000; a[2] = 0; - for (i=1 ; i<1000 ; i++) { + for (i = 1; i < 1000; i++) { if (signal_pulse_data[i][0] > 0) { -// fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\t d:%d\n", -// i, signal_pulse_data[i][0], signal_pulse_data[i][1], -// signal_pulse_data[i][2], signal_pulse_data[i][0]-signal_pulse_data[i-1][1]); - signal_distance_data[i-1] = signal_pulse_data[i][0]-signal_pulse_data[i-1][1]; - if (signal_distance_data[i-1] > a[2]) - a[2] = signal_distance_data[i-1]; - if (signal_distance_data[i-1] <= a[0]) - a[0] = signal_distance_data[i-1]; + // fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\t d:%d\n", + // i, signal_pulse_data[i][0], signal_pulse_data[i][1], + // signal_pulse_data[i][2], signal_pulse_data[i][0]-signal_pulse_data[i-1][1]); + signal_distance_data[i - 1] = signal_pulse_data[i][0] - signal_pulse_data[i - 1][1]; + if (signal_distance_data[i - 1] > a[2]) + a[2] = signal_distance_data[i - 1]; + if (signal_distance_data[i - 1] <= a[0]) + a[0] = signal_distance_data[i - 1]; } } min = a[0]; max = a[2]; - a[1] = (a[0]+a[2])/2; -// for (i=0 ; i<1 ; i++) { -// b[i] = (a[i]+a[i+1])/2; -// } - b[0] = (a[0]+a[1])/2; - b[1] = (a[1]+a[2])/2; -// fprintf(stderr, "a[0]: %d\t a[1]: %d\t a[2]: %d\t\n",a[0],a[1],a[2]); -// fprintf(stderr, "b[0]: %d\t b[1]: %d\n",b[0],b[1]); - - k=1; + a[1] = (a[0] + a[2]) / 2; + // for (i=0 ; i<1 ; i++) { + // b[i] = (a[i]+a[i+1])/2; + // } + b[0] = (a[0] + a[1]) / 2; + b[1] = (a[1] + a[2]) / 2; + // fprintf(stderr, "a[0]: %d\t a[1]: %d\t a[2]: %d\t\n",a[0],a[1],a[2]); + // fprintf(stderr, "b[0]: %d\t b[1]: %d\n",b[0],b[1]); + + k = 1; delta = 10000000; - while((k < 10) && (delta > 0)) { - for (i=0 ; i<3 ; i++) { + while ((k < 10) && (delta > 0)) { + for (i = 0; i < 3; i++) { a_new[i] = 0; a_cnt[i] = 0; } - for (i=0 ; i < 1000 ; i++) { + for (i = 0; i < 1000; i++) { if (signal_distance_data[i] > 0) { if (signal_distance_data[i] < b[0]) { a_new[0] += signal_distance_data[i]; a_cnt[0]++; - } else if (signal_distance_data[i] < b[1] && signal_distance_data[i] >= b[0]){ + } else if (signal_distance_data[i] < b[1] && signal_distance_data[i] >= b[0]) { a_new[1] += signal_distance_data[i]; a_cnt[1]++; } else if (signal_distance_data[i] >= b[1]) { @@ -1049,37 +434,37 @@ static void classify_signal() { } } -// fprintf(stderr, "Iteration %d.", k); + // fprintf(stderr, "Iteration %d.", k); delta = 0; - for (i=0 ; i<3 ; i++) { + for (i = 0; i < 3; i++) { if (a_cnt[i]) a_new[i] /= a_cnt[i]; - delta += (a[i]-a_new[i])*(a[i]-a_new[i]); -// fprintf(stderr, "\ta[%d]: %d (%d)", i, a_new[i], a[i]); + delta += (a[i] - a_new[i])*(a[i] - a_new[i]); + // fprintf(stderr, "\ta[%d]: %d (%d)", i, a_new[i], a[i]); a[i] = a_new[i]; } -// fprintf(stderr, " delta %d\n", delta); + // fprintf(stderr, " delta %d\n", delta); if (a[0] < min) { a[0] = min; -// fprintf(stderr, "Fixing a[0] = %d\n", min); + // fprintf(stderr, "Fixing a[0] = %d\n", min); } if (a[2] > max) { a[0] = max; -// fprintf(stderr, "Fixing a[2] = %d\n", max); + // fprintf(stderr, "Fixing a[2] = %d\n", max); } -// if (a[1] == 0) { -// a[1] = (a[2]+a[0])/2; -// fprintf(stderr, "Fixing a[1] = %d\n", a[1]); -// } - -// fprintf(stderr, "Iteration %d.", k); - for (i=0 ; i<2 ; i++) { -// fprintf(stderr, "\tb[%d]: (%d) ", i, b[i]); - b[i] = (a[i]+a[i+1])/2; -// fprintf(stderr, "%d ", b[i]); + // if (a[1] == 0) { + // a[1] = (a[2]+a[0])/2; + // fprintf(stderr, "Fixing a[1] = %d\n", a[1]); + // } + + // fprintf(stderr, "Iteration %d.", k); + for (i = 0; i < 2; i++) { + // fprintf(stderr, "\tb[%d]: (%d) ", i, b[i]); + b[i] = (a[i] + a[i + 1]) / 2; + // fprintf(stderr, "%d ", b[i]); } -// fprintf(stderr, "\n"); + // fprintf(stderr, "\n"); k++; } @@ -1095,46 +480,46 @@ static void classify_signal() { if (a[1] 0) { - if (signal_distance_data[i] < (a[0]+a[1])/2) { -// fprintf(stderr, "0 [%d] %d < %d\n",i, signal_distance_data[i], (a[0]+a[1])/2); + if (signal_distance_data[i] < (a[0] + a[1]) / 2) { + // fprintf(stderr, "0 [%d] %d < %d\n",i, signal_distance_data[i], (a[0]+a[1])/2); demod_add_bit(&p, 0); - } else if ((signal_distance_data[i] > (a[0]+a[1])/2) && (signal_distance_data[i] < (a[1]+a[2])/2)) { -// fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[0]+a[1])/2); + } else if ((signal_distance_data[i] > (a[0] + a[1]) / 2) && (signal_distance_data[i] < (a[1] + a[2]) / 2)) { + // fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[0]+a[1])/2); demod_add_bit(&p, 1); - } else if (signal_distance_data[i] > (a[1]+a[2])/2) { -// fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2); + } else if (signal_distance_data[i] > (a[1] + a[2]) / 2) { + // fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2); demod_next_bits_packet(&p); } - } + } } demod_print_bits_packet(&p); } if (signal_type == 2) { - for(i=0 ; i<1000 ; i++){ - if(signal_pulse_data[i][2] > 0) { + for (i = 0; i < 1000; i++) { + if (signal_pulse_data[i][2] > 0) { if (signal_pulse_data[i][2] < p_limit) { -// fprintf(stderr, "0 [%d] %d < %d\n",i, signal_pulse_data[i][2], p_limit); + // fprintf(stderr, "0 [%d] %d < %d\n",i, signal_pulse_data[i][2], p_limit); demod_add_bit(&p, 0); } else { -// fprintf(stderr, "1 [%d] %d > %d\n",i, signal_pulse_data[i][2], p_limit); + // fprintf(stderr, "1 [%d] %d > %d\n",i, signal_pulse_data[i][2], p_limit); demod_add_bit(&p, 1); } - if ((signal_distance_data[i] >= (a[1]+a[2])/2)) { -// fprintf(stderr, "\\n [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2); + if ((signal_distance_data[i] >= (a[1] + a[2]) / 2)) { + // fprintf(stderr, "\\n [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2); demod_next_bits_packet(&p); } @@ -1144,7 +529,7 @@ static void classify_signal() { demod_print_bits_packet(&p); } - for (i=0 ; i<1000 ; i++) { + for (i = 0; i < 1000; i++) { signal_pulse_data[i][0] = 0; signal_pulse_data[i][1] = 0; signal_pulse_data[i][2] = 0; @@ -1153,12 +538,10 @@ static void classify_signal() { }; - -static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) -{ +static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) { unsigned int i; - for (i=0 ; i demod->level_limit) { if (!signal_start) signal_start = counter; @@ -1168,24 +551,24 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) signal_pulse_data[signal_pulse_counter][0] = counter; signal_pulse_data[signal_pulse_counter][1] = -1; signal_pulse_data[signal_pulse_counter][2] = -1; - if (debug_output) fprintf(stderr, "pulse_distance %d\n",counter-pulse_end); - if (debug_output) fprintf(stderr, "pulse_start distance %d\n",pulse_start-prev_pulse_start); - if (debug_output) fprintf(stderr, "pulse_start[%d] found at sample %d, value = %d\n",pulses_found, counter, buf[i]); + if (debug_output) fprintf(stderr, "pulse_distance %d\n", counter - pulse_end); + if (debug_output) fprintf(stderr, "pulse_start distance %d\n", pulse_start - prev_pulse_start); + if (debug_output) fprintf(stderr, "pulse_start[%d] found at sample %d, value = %d\n", pulses_found, counter, buf[i]); prev_pulse_start = pulse_start; - print =0; + print = 0; print2 = 1; } } counter++; if (buf[i] < demod->level_limit) { if (print2) { - pulse_avg += counter-pulse_start; + pulse_avg += counter - pulse_start; if (debug_output) fprintf(stderr, "pulse_end [%d] found at sample %d, pulse length = %d, pulse avg length = %d\n", - pulses_found, counter, counter-pulse_start, pulse_avg/pulses_found); + pulses_found, counter, counter - pulse_start, pulse_avg / pulses_found); pulse_end = counter; print2 = 0; signal_pulse_data[signal_pulse_counter][1] = counter; - signal_pulse_data[signal_pulse_counter][2] = counter-pulse_start; + signal_pulse_data[signal_pulse_counter][2] = counter - pulse_start; signal_pulse_counter++; if (signal_pulse_counter >= 4000) { signal_pulse_counter = 0; @@ -1195,37 +578,37 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) print = 1; if (signal_start && (pulse_end + 50000 < counter)) { signal_end = counter - 40000; - fprintf(stderr, "*** signal_start = %d, signal_end = %d\n",signal_start-10000, signal_end); - fprintf(stderr, "signal_len = %d, pulses = %d\n", signal_end-(signal_start-10000), pulses_found); + fprintf(stderr, "*** signal_start = %d, signal_end = %d\n", signal_start - 10000, signal_end); + fprintf(stderr, "signal_len = %d, pulses = %d\n", signal_end - (signal_start - 10000), pulses_found); pulses_found = 0; classify_signal(); signal_pulse_counter = 0; if (demod->sg_buf) { - int start_pos, signal_bszie, wlen, wrest=0, sg_idx, idx; + int start_pos, signal_bszie, wlen, wrest = 0, sg_idx, idx; char sgf_name[256] = {0}; FILE *sgfp; - sprintf(sgf_name, "gfile%03d.data",demod->signal_grabber); + sprintf(sgf_name, "gfile%03d.data", demod->signal_grabber); demod->signal_grabber++; - signal_bszie = 2*(signal_end-(signal_start-10000)); - signal_bszie = (131072-(signal_bszie%131072)) + signal_bszie; - sg_idx = demod->sg_index-demod->sg_len; + signal_bszie = 2 * (signal_end - (signal_start - 10000)); + signal_bszie = (131072 - (signal_bszie % 131072)) + signal_bszie; + sg_idx = demod->sg_index - demod->sg_len; if (sg_idx < 0) - sg_idx = SIGNAL_GRABBER_BUFFER-demod->sg_len; - idx = (i-40000)*2; - start_pos = sg_idx+idx-signal_bszie; + sg_idx = SIGNAL_GRABBER_BUFFER - demod->sg_len; + idx = (i - 40000)*2; + start_pos = sg_idx + idx - signal_bszie; fprintf(stderr, "signal_bszie = %d - sg_index = %d\n", signal_bszie, demod->sg_index); fprintf(stderr, "start_pos = %d - buffer_size = %d\n", start_pos, SIGNAL_GRABBER_BUFFER); if (signal_bszie > SIGNAL_GRABBER_BUFFER) fprintf(stderr, "Signal bigger then buffer, signal = %d > buffer %d !!\n", signal_bszie, SIGNAL_GRABBER_BUFFER); if (start_pos < 0) { - start_pos = SIGNAL_GRABBER_BUFFER+start_pos; + start_pos = SIGNAL_GRABBER_BUFFER + start_pos; fprintf(stderr, "restart_pos = %d\n", start_pos); } - fprintf(stderr, "*** Saving signal to file %s\n",sgf_name); + fprintf(stderr, "*** Saving signal to file %s\n", sgf_name); sgfp = fopen(sgf_name, "wb"); if (!sgfp) { fprintf(stderr, "Failed to open %s\n", sgf_name); @@ -1235,12 +618,12 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) wlen = SIGNAL_GRABBER_BUFFER - start_pos; wrest = signal_bszie - wlen; } - fprintf(stderr, "*** Writing data from %d, len %d\n",start_pos, wlen); + fprintf(stderr, "*** Writing data from %d, len %d\n", start_pos, wlen); fwrite(&demod->sg_buf[start_pos], 1, wlen, sgfp); if (wrest) { - fprintf(stderr, "*** Writing data from %d, len %d\n",0, wrest); - fwrite(&demod->sg_buf[0], 1, wrest, sgfp); + fprintf(stderr, "*** Writing data from %d, len %d\n", 0, wrest); + fwrite(&demod->sg_buf[0], 1, wrest, sgfp); } fclose(sgfp); @@ -1263,7 +646,7 @@ err: static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) { unsigned int i; - for (i=0 ; i demod->level_limit) { p->pulse_count = 1; p->start_c = 1; @@ -1282,17 +665,17 @@ static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16 demod_add_bit(p, 1); } else { demod_next_bits_packet(p); - p->pulse_count = 0; + p->pulse_count = 0; p->sample_counter = 0; } p->pulse_distance = 0; } if (p->sample_counter > p->reset_limit) { - p->start_c = 0; + p->start_c = 0; p->sample_counter = 0; p->pulse_distance = 0; if (p->callback) - events+=p->callback(p->bits_buffer); + events += p->callback(p->bits_buffer, p->bits_per_row); else demod_print_bits_packet(p); @@ -1306,19 +689,21 @@ static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16 static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) { unsigned int i; - for (i=0 ; i demod->level_limit && !p->start_bit) { /* start bit detected */ - p->start_bit = 1; - p->start_c = 1; + p->start_bit = 1; + p->start_c = 1; p->sample_counter = 0; -// fprintf(stderr, "start bit pulse start detected\n"); + // fprintf(stderr, "start bit pulse start detected\n"); } if (!p->real_bits && p->start_bit && (buf[i] < demod->level_limit)) { /* end of startbit */ p->real_bits = 1; -// fprintf(stderr, "start bit pulse end detected\n"); + p->pulse_length = 0; + p->sample_counter = 0; + // fprintf(stderr, "start bit pulse end detected\n"); } if (p->start_c) p->sample_counter++; @@ -1326,16 +711,16 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16 if (!p->pulse_start && p->real_bits && (buf[i] > demod->level_limit)) { /* save the pulse start, it will never be zero */ p->pulse_start = p->sample_counter; -// fprintf(stderr, "real bit pulse start detected\n"); + // fprintf(stderr, "real bit pulse start detected\n"); } if (p->real_bits && p->pulse_start && (buf[i] < demod->level_limit)) { /* end of pulse */ - p->pulse_length = p->sample_counter-p->pulse_start; -// fprintf(stderr, "real bit pulse end detected %d\n", p->pulse_length); -// fprintf(stderr, "space duration %d\n", p->sample_counter); + p->pulse_length = p->sample_counter - p->pulse_start; + // fprintf(stderr, "real bit pulse end detected %d\n", p->pulse_length); + // fprintf(stderr, "space duration %d\n", p->sample_counter); if (p->pulse_length <= p->short_limit) { demod_add_bit(p, 1); @@ -1343,10 +728,10 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16 demod_add_bit(p, 0); } p->sample_counter = 0; - p->pulse_start = 0; + p->pulse_start = 0; } - if (p->real_bits && p->pulse_length > p->long_limit) { + if (p->real_bits && (p->pulse_length > p->long_limit)) { demod_next_bits_packet(p); p->start_bit = 0; @@ -1356,8 +741,9 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16 if (p->sample_counter > p->reset_limit) { p->start_c = 0; p->sample_counter = 0; + //demod_print_bits_packet(p); if (p->callback) - events+=p->callback(p->bits_buffer); + events += p->callback(p->bits_buffer, p->bits_per_row); else demod_print_bits_packet(p); demod_reset_bits_packet(p); @@ -1368,7 +754,56 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16 } } +/* Machester Decode for Oregon Scientific Weather Sensors + Decode data streams sent by Oregon Scientific v2.1, and v3 weather sensors. + With manchester encoding, both the pulse width and pulse distance vary. Clock sync + is recovered from the data stream based on pulse widths and distances exceeding a + minimum threashold (short limit* 1.5). + */ +static void manchester_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) { + unsigned int i; + + if (p->sample_counter == 0) + p->sample_counter = p->short_limit*2; + + for (i=0 ; istart_c) + p->sample_counter++; /* For this decode type, sample counter is count since last data bit recorded */ + + if (!p->pulse_count && (buf[i] > demod->level_limit)) { /* Pulse start (rising edge) */ + p->pulse_count = 1; + if (p->sample_counter > (p->short_limit + (p->short_limit>>1))) { + /* Last bit was recorded more than short_limit*1.5 samples ago */ + /* so this pulse start must be a data edge (rising data edge means bit = 0) */ + demod_add_bit(p, 0); + p->sample_counter=1; + p->start_c++; // start_c counts number of bits received + } + } + if (p->pulse_count && (buf[i] <= demod->level_limit)) { /* Pulse end (falling edge) */ + if (p->sample_counter > (p->short_limit + (p->short_limit>>1))) { + /* Last bit was recorded more than "short_limit*1.5" samples ago */ + /* so this pulse end is a data edge (falling data edge means bit = 1) */ + demod_add_bit(p, 1); + p->sample_counter=1; + p->start_c++; + } + p->pulse_count = 0; + } + + if (p->sample_counter > p->reset_limit) { + //fprintf(stderr, "manchester_decode number of bits received=%d\n",p->start_c); + if (p->callback) + events+=p->callback(p->bits_buffer, p->bits_per_row); + else + demod_print_bits_packet(p); + demod_reset_bits_packet(p); + p->sample_counter = p->short_limit*2; + p->start_c = 0; + } + } +} /** Something that might look like a IIR lowpass filter * @@ -1386,28 +821,25 @@ static uint16_t lp_xmem[FILTER_ORDER] = {0}; #define S_CONST (1<>1) + (b[0]*x_buf[0]>>1) + (b[1]*lp_xmem[0]>>1)) >> (F_SCALE-1); - for (i=1 ; i>1) + (b[0]*x_buf[i]>>1) + (b[1]*x_buf[i-1]>>1)) >> (F_SCALE-1); + y_buf[0] = ((a[1] * y_buf[-1] >> 1) + (b[0] * x_buf[0] >> 1) + (b[1] * lp_xmem[0] >> 1)) >> (F_SCALE - 1); + for (i = 1; i < len; i++) { + y_buf[i] = ((a[1] * y_buf[i - 1] >> 1) + (b[0] * x_buf[i] >> 1) + (b[1] * x_buf[i - 1] >> 1)) >> (F_SCALE - 1); } /* Save last sample */ - memcpy(lp_xmem, &x_buf[len-1-FILTER_ORDER], FILTER_ORDER*sizeof(int16_t)); - memcpy(&y_buf[-FILTER_ORDER], &y_buf[len-1-FILTER_ORDER], FILTER_ORDER*sizeof(int16_t)); + memcpy(lp_xmem, &x_buf[len - 1 - FILTER_ORDER], FILTER_ORDER * sizeof (int16_t)); + memcpy(&y_buf[-FILTER_ORDER], &y_buf[len - 1 - FILTER_ORDER], FILTER_ORDER * sizeof (int16_t)); //fprintf(stderr, "%d\n", y_buf[0]); } - -static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) -{ +static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) { struct dm_state *demod = ctx; uint16_t* sbuf = (uint16_t*) buf; int i; @@ -1424,39 +856,42 @@ static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) if (demod->signal_grabber) { //fprintf(stderr, "[%d] sg_index - len %d\n", demod->sg_index, len ); memcpy(&demod->sg_buf[demod->sg_index], buf, len); - demod->sg_len =len; - demod->sg_index +=len; - if (demod->sg_index+len > SIGNAL_GRABBER_BUFFER) + demod->sg_len = len; + demod->sg_index += len; + if (demod->sg_index + len > SIGNAL_GRABBER_BUFFER) demod->sg_index = 0; } if (demod->debug_mode == 0) { envelope_detect(buf, len, demod->decimation_level); - low_pass_filter(sbuf, demod->f_buf, len>>(demod->decimation_level+1)); - } else if (demod->debug_mode == 1){ + low_pass_filter(sbuf, demod->f_buf, len >> (demod->decimation_level + 1)); + } else if (demod->debug_mode == 1) { memcpy(demod->f_buf, buf, len); } if (demod->analyze) { - pwm_analyze(demod, demod->f_buf, len/2); - } - { - for (i=0 ; ir_dev_num ; i++) { + pwm_analyze(demod, demod->f_buf, len / 2); + } else { + for (i = 0; i < demod->r_dev_num; i++) { switch (demod->r_devs[i]->modulation) { case OOK_PWM_D: - pwm_d_decode(demod, demod->r_devs[i], demod->f_buf, len/2); + pwm_d_decode(demod, demod->r_devs[i], demod->f_buf, len / 2); break; case OOK_PWM_P: - pwm_p_decode(demod, demod->r_devs[i], demod->f_buf, len/2); + pwm_p_decode(demod, demod->r_devs[i], demod->f_buf, len / 2); + break; + case OOK_MANCHESTER: + manchester_decode(demod, demod->r_devs[i], demod->f_buf, len/2); break; default: fprintf(stderr, "Unknown modulation %d in protocol!\n", demod->r_devs[i]->modulation); } } + fflush(stdout); } if (demod->save_data) { - if (fwrite(demod->f_buf, 1, len>>demod->decimation_level, demod->file) != len>>demod->decimation_level) { + if (fwrite(demod->f_buf, 1, len >> demod->decimation_level, demod->file) != len >> demod->decimation_level) { fprintf(stderr, "Short write, samples lost, exiting!\n"); rtlsdr_cancel_async(dev); } @@ -1465,21 +900,20 @@ static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) if (bytes_to_read > 0) bytes_to_read -= len; - if(frequencies>1) { + if (frequencies > 1) { time_t rawtime; time(&rawtime); - if(difftime(rawtime, rawtime_old)>DEFAULT_HOP_TIME || events>=DEFAULT_HOP_EVENTS) { - rawtime_old=rawtime; - events=0; - do_exit_async=1; + if (difftime(rawtime, rawtime_old) > DEFAULT_HOP_TIME || events >= DEFAULT_HOP_EVENTS) { + rawtime_old = rawtime; + events = 0; + do_exit_async = 1; rtlsdr_cancel_async(dev); } } } } -int main(int argc, char **argv) -{ +int main(int argc, char **argv) { #ifndef _WIN32 struct sigaction sigact; #endif @@ -1494,79 +928,79 @@ int main(int argc, char **argv) struct dm_state* demod; uint8_t *buffer; uint32_t dev_index = 0; - int frequency_current=0; + int frequency_current = 0; uint32_t out_block_size = DEFAULT_BUF_LENGTH; int device_count; char vendor[256], product[256], serial[256]; - demod = malloc(sizeof(struct dm_state)); - memset(demod,0,sizeof(struct dm_state)); + demod = malloc(sizeof (struct dm_state)); + memset(demod, 0, sizeof (struct dm_state)); /* initialize tables */ calc_squares(); demod->f_buf = &demod->filter_buffer[FILTER_ORDER]; demod->decimation_level = DEFAULT_DECIMATION_LEVEL; - demod->level_limit = DEFAULT_LEVEL_LIMIT; + demod->level_limit = DEFAULT_LEVEL_LIMIT; while ((opt = getopt(argc, argv, "x:z:p:Dtam:r:c:l:d:f:g:s:b:n:S::")) != -1) { switch (opt) { - case 'd': - dev_index = atoi(optarg); - break; - case 'f': - if(frequencieslevel_limit = (uint32_t)atof(optarg); - break; - case 'n': - bytes_to_read = (uint32_t)atof(optarg) * 2; - break; - case 'c': - demod->decimation_level = (uint32_t)atof(optarg); - break; - case 'a': - demod->analyze = 1; - break; - case 'r': - test_mode_file = optarg; - break; - case 't': - demod->signal_grabber = 1; - break; - case 'm': - demod->debug_mode = atoi(optarg); - break; - case 'S': - sync_mode = 1; - break; - case 'D': - debug_output = 1; - break; - case 'z': - override_short = atoi(optarg); - break; - case 'x': - override_long = atoi(optarg); - break; - default: - usage(); - break; + case 'd': + dev_index = atoi(optarg); + break; + case 'f': + if (frequencies < MAX_PROTOCOLS) frequency[frequencies++] = (uint32_t) atof(optarg); + else fprintf(stderr, "Max number of frequencies reached %d\n", MAX_PROTOCOLS); + break; + case 'g': + gain = (int) (atof(optarg) * 10); /* tenths of a dB */ + break; + case 'p': + ppm_error = atoi(optarg); + break; + case 's': + samp_rate = (uint32_t) atof(optarg); + break; + case 'b': + out_block_size = (uint32_t) atof(optarg); + break; + case 'l': + demod->level_limit = (uint32_t) atof(optarg); + break; + case 'n': + bytes_to_read = (uint32_t) atof(optarg) * 2; + break; + case 'c': + demod->decimation_level = (uint32_t) atof(optarg); + break; + case 'a': + demod->analyze = 1; + break; + case 'r': + test_mode_file = optarg; + break; + case 't': + demod->signal_grabber = 1; + break; + case 'm': + demod->debug_mode = atoi(optarg); + break; + case 'S': + sync_mode = 1; + break; + case 'D': + debug_output = 1; + break; + case 'z': + override_short = atoi(optarg); + break; + case 'x': + override_long = atoi(optarg); + break; + default: + usage(); + break; } } @@ -1574,33 +1008,41 @@ int main(int argc, char **argv) register_protocol(demod, &rubicson); register_protocol(demod, &prologue); register_protocol(demod, &silvercrest); -// register_protocol(demod, &generic_hx2262); -// register_protocol(demod, &technoline_ws9118); + // register_protocol(demod, &generic_hx2262); + // register_protocol(demod, &technoline_ws9118); register_protocol(demod, &elv_em1000); register_protocol(demod, &elv_ws2000); register_protocol(demod, &waveman); register_protocol(demod, &steffen); register_protocol(demod, &acurite5n1); + register_protocol(demod, &acurite_th); + register_protocol(demod, &acurite_rain_gauge); + register_protocol(demod, &lacrossetx); + register_protocol(demod, &oregon_scientific); + register_protocol(demod, &newkaku); + register_protocol(demod, &alectov1); + register_protocol(demod, &intertechno); + register_protocol(demod, &mebus433); register_protocol(demod, &wh2); - if (argc <= optind-1) { + if (argc <= optind - 1) { usage(); } else { filename = argv[optind]; } - if(out_block_size < MINIMAL_BUF_LENGTH || - out_block_size > MAXIMAL_BUF_LENGTH ){ + if (out_block_size < MINIMAL_BUF_LENGTH || + out_block_size > MAXIMAL_BUF_LENGTH) { fprintf(stderr, - "Output block size wrong value, falling back to default\n"); + "Output block size wrong value, falling back to default\n"); fprintf(stderr, - "Minimal length: %u\n", MINIMAL_BUF_LENGTH); + "Minimal length: %u\n", MINIMAL_BUF_LENGTH); fprintf(stderr, - "Maximal length: %u\n", MAXIMAL_BUF_LENGTH); + "Maximal length: %u\n", MAXIMAL_BUF_LENGTH); out_block_size = DEFAULT_BUF_LENGTH; } - buffer = malloc(out_block_size * sizeof(uint8_t)); + buffer = malloc(out_block_size * sizeof (uint8_t)); device_count = rtlsdr_get_device_count(); if (!device_count) { @@ -1617,7 +1059,7 @@ int main(int argc, char **argv) fprintf(stderr, "\n"); fprintf(stderr, "Using device %d: %s\n", - dev_index, rtlsdr_get_device_name(dev_index)); + dev_index, rtlsdr_get_device_name(dev_index)); r = rtlsdr_open(&dev, dev_index); if (r < 0) { @@ -1634,7 +1076,7 @@ int main(int argc, char **argv) sigaction(SIGQUIT, &sigact, NULL); sigaction(SIGPIPE, &sigact, NULL); #else - SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); + SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE); #endif /* Set the sample rate */ r = rtlsdr_set_sample_rate(dev, samp_rate); @@ -1643,11 +1085,11 @@ int main(int argc, char **argv) else fprintf(stderr, "Sample rate set to %d.\n", rtlsdr_get_sample_rate(dev)); // Unfortunately, doesn't return real rate - fprintf(stderr, "Sample rate decimation set to %d. %d->%d\n",demod->decimation_level, samp_rate, samp_rate>>demod->decimation_level); + fprintf(stderr, "Sample rate decimation set to %d. %d->%d\n", demod->decimation_level, samp_rate, samp_rate >> demod->decimation_level); fprintf(stderr, "Bit detection level set to %d.\n", demod->level_limit); if (0 == gain) { - /* Enable automatic gain */ + /* Enable automatic gain */ r = rtlsdr_set_tuner_gain_mode(dev, 0); if (r < 0) fprintf(stderr, "WARNING: Failed to enable automatic gain.\n"); @@ -1664,7 +1106,7 @@ int main(int argc, char **argv) if (r < 0) fprintf(stderr, "WARNING: Failed to set tuner gain.\n"); else - fprintf(stderr, "Tuner gain set to %f dB.\n", gain/10.0); + fprintf(stderr, "Tuner gain set to %f dB.\n", gain / 10.0); } r = rtlsdr_set_freq_correction(dev, ppm_error); @@ -1672,7 +1114,7 @@ int main(int argc, char **argv) demod->save_data = 1; if (!filename) { demod->save_data = 0; - } else if(strcmp(filename, "-") == 0) { /* Write samples to stdout */ + } else if (strcmp(filename, "-") == 0) { /* Write samples to stdout */ demod->file = stdout; #ifdef _WIN32 _setmode(_fileno(stdin), _O_BINARY); @@ -1691,13 +1133,13 @@ int main(int argc, char **argv) if (test_mode_file) { int i = 0; unsigned char test_mode_buf[DEFAULT_BUF_LENGTH]; - fprintf(stderr, "Test mode active. Reading samples from file: %s\n",test_mode_file); + fprintf(stderr, "Test mode active. Reading samples from file: %s\n", test_mode_file); test_mode = fopen(test_mode_file, "r"); if (!test_mode) { - fprintf(stderr, "Opening file: %s failed!\n",test_mode_file); + fprintf(stderr, "Opening file: %s failed!\n", test_mode_file); goto out; } - while(fread(test_mode_buf, 131072, 1, test_mode) != 0) { + while (fread(test_mode_buf, 131072, 1, test_mode) != 0) { rtlsdr_callback(test_mode_buf, 131072, demod); i++; } @@ -1724,17 +1166,17 @@ int main(int argc, char **argv) break; } - if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) { + if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t) n_read)) { n_read = bytes_to_read; do_exit = 1; } - if (fwrite(buffer, 1, n_read, demod->file) != (size_t)n_read) { + if (fwrite(buffer, 1, n_read, demod->file) != (size_t) n_read) { fprintf(stderr, "Short write, samples lost, exiting!\n"); break; } - if ((uint32_t)n_read < out_block_size) { + if ((uint32_t) n_read < out_block_size) { fprintf(stderr, "Short read, samples lost, exiting!\n"); break; } @@ -1743,25 +1185,25 @@ int main(int argc, char **argv) bytes_to_read -= n_read; } } else { - if(frequencies==0) { - frequency[0] = DEFAULT_FREQUENCY; - frequencies=1; + if (frequencies == 0) { + frequency[0] = DEFAULT_FREQUENCY; + frequencies = 1; } else { - time(&rawtime_old); + time(&rawtime_old); } fprintf(stderr, "Reading samples in async mode...\n"); - while(!do_exit) { + while (!do_exit) { /* Set the frequency */ r = rtlsdr_set_center_freq(dev, frequency[frequency_current]); if (r < 0) fprintf(stderr, "WARNING: Failed to set center freq.\n"); else fprintf(stderr, "Tuned to %u Hz.\n", rtlsdr_get_center_freq(dev)); - r = rtlsdr_read_async(dev, rtlsdr_callback, (void *)demod, - DEFAULT_ASYNC_BUF_NUMBER, out_block_size); - do_exit_async=0; + r = rtlsdr_read_async(dev, rtlsdr_callback, (void *) demod, + DEFAULT_ASYNC_BUF_NUMBER, out_block_size); + do_exit_async = 0; frequency_current++; - if(frequency_current>frequencies-1) frequency_current=0; + if (frequency_current > frequencies - 1) frequency_current = 0; } } @@ -1773,17 +1215,17 @@ int main(int argc, char **argv) if (demod->file && (demod->file != stdout)) fclose(demod->file); - for (i=0 ; ir_dev_num ; i++) + for (i = 0; i < demod->r_dev_num; i++) free(demod->r_devs[i]); if (demod->signal_grabber) free(demod->sg_buf); - if(demod) + if (demod) free(demod); rtlsdr_close(dev); - free (buffer); + free(buffer); out: return r >= 0 ? r : -r; }