X-Git-Url: https://git.rvb.name/rtl-433.git/blobdiff_plain/7797ca508c68bb2795cac6e8996f04a5b445220a..337eb4ba945097205fbb6a3ca7912fb0697092d1:/src/rtl_433.c~?ds=inline
diff --git a/src/rtl_433.c~ b/src/rtl_433.c~
old mode 100755
new mode 100644
index c997acb..98685ac
--- a/src/rtl_433.c~
+++ b/src/rtl_433.c~
@@ -20,114 +20,63 @@
* along with this program. If not, see .
*/
-
-/* Currently this can decode the temperature and id from Rubicson sensors
- *
- * the sensor sends 36 bits 12 times pwm modulated
- * the data is grouped into 9 nibles
- * [id0] [id1], [unk0] [temp0], [temp1] [temp2], [unk1] [unk2], [unk3]
- *
- * The id changes when the battery is changed in the sensor.
- * unk0 is always 1 0 0 0, most likely 2 channel bits as the sensor can recevice 3 channels
- * unk1-3 changes and the meaning is unknown
- * temp is 12 bit signed scaled by 10
- *
- * The sensor can be bought at Kjell&Co
- */
-
-/* Prologue sensor protocol
- *
- * the sensor sends 36 bits 7 times, before the first packet there is a pulse sent
- * the packets are pwm modulated
- *
- * the data is grouped in 9 nibles
- * [id0] [rid0] [rid1] [data0] [temp0] [temp1] [temp2] [humi0] [humi1]
- *
- * id0 is always 1001,9
- * rid is a random id that is generated when the sensor starts, could include battery status
- * the same batteries often generate the same id
- * data(3) is 0 the battery status, 1 ok, 0 low, first reading always say low
- * data(2) is 1 when the sensor sends a reading when pressing the button on the sensor
- * data(1,0)+1 forms the channel number that can be set by the sensor (1-3)
- * temp is 12 bit signed scaled by 10
- * humi0 is always 1100,c if no humidity sensor is available
- * humi1 is always 1100,c if no humidity sensor is available
- *
- * The sensor can be bought at Clas Ohlson
- */
-
-#include
-#include
-#include
-#include
-#include
-#include
-
-#ifndef _WIN32
-#include
-#else
-#include
-#include
-#include
-#include "getopt/getopt.h"
-#endif
-
#include "rtl-sdr.h"
-
-#define DEFAULT_SAMPLE_RATE 250000
-#define DEFAULT_FREQUENCY 433920000
-#define DEFAULT_HOP_TIME (60*10)
-#define DEFAULT_HOP_EVENTS 2
-#define DEFAULT_ASYNC_BUF_NUMBER 32
-#define DEFAULT_BUF_LENGTH (16 * 16384)
-#define DEFAULT_LEVEL_LIMIT 10000
-#define DEFAULT_DECIMATION_LEVEL 0
-#define MINIMAL_BUF_LENGTH 512
-#define MAXIMAL_BUF_LENGTH (256 * 16384)
-#define FILTER_ORDER 1
-#define MAX_PROTOCOLS 10
-#define SIGNAL_GRABBER_BUFFER (12 * DEFAULT_BUF_LENGTH)
-#define BITBUF_COLS 34
-#define BITBUF_ROWS 50
+#include "rtl_433.h"
+#include "rtl_433_devices.h"
static int do_exit = 0;
-static int do_exit_async=0, frequencies=0, events=0;
+static int do_exit_async = 0, frequencies = 0, events = 0;
uint32_t frequency[MAX_PROTOCOLS];
time_t rawtime_old;
int flag;
-uint32_t samp_rate=DEFAULT_SAMPLE_RATE;
+uint32_t samp_rate = DEFAULT_SAMPLE_RATE;
static uint32_t bytes_to_read = 0;
static rtlsdr_dev_t *dev = NULL;
static uint16_t scaled_squares[256];
-static int debug_output = 0;
static int override_short = 0;
static int override_long = 0;
+int debug_output = 0;
-/* Supported modulation types */
-#define OOK_PWM_D 1 /* Pulses are of the same length, the distance varies */
-#define OOK_PWM_P 2 /* The length of the pulses varies */
+int debug_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) {
+ int i,j,k;
+ int rows_used[BITBUF_ROWS];
+ int col_max = 0;
+ int row_cnt = 0;
+ // determine what part of bb[][] has non-zero data to avoid
+ // outputting lots of empty rows
+ for (i=0 ; i 0 ; j--) {
+ if (bb[i][j] != 0)
+ break;
+ }
+ if (j != 0) {
+ rows_used[i] = 1;
+ row_cnt++;
+ if (j > col_max)
+ col_max = j;
+ } else {
+ rows_used[i] = 0;
+ }
+ }
-typedef struct {
- unsigned int id;
- char name[256];
- unsigned int modulation;
- unsigned int short_limit;
- unsigned int long_limit;
- unsigned int reset_limit;
- int (*json_callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS]) ;
-} r_device;
+ if (!row_cnt) {
+ fprintf(stderr, "debug_callback: empty data array\n");
+ return 0;
+ }
-static int debug_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- int i,j,k;
fprintf(stderr, "\n");
for (i=0 ; i=0 ; k--) {
if (bb[i][j] & 1<>1;
- payload[1] = bb[0][2]>>1 | ((bb[0][1]&1) << 7 );
- payload[2] = bb[0][3]>>1 | ((bb[0][2]&1) << 7 );
- payload[3] = bb[0][4]>>1 | ((bb[0][3]&1) << 7 );
-
- received_crc8 = (bb[0][5]>>1) | ((bb[0][4]&1) << 7 );
-
- payload_crc8 = crc8(payload,4);
-
- if (payload_crc8 != received_crc8) return 0;
-
- wh2_id = (payload[0] << 4) + (payload[1] >> 4);
- wh2_temp = ((payload[1] & 0x7) << 8) + payload[2];
- if (payload[1] & 0x8) {
- wh2_temp = -wh2_temp;
- }
- wh2_temp = wh2_temp/10;
-
- wh2_humidity = payload[3];
-
- fprintf(stdout, "SENSOR:TYPE=WH2,ID=%X,HUMIDITY=%g,TEMPERATURE=%g\n",wh2_id,wh2_humidity,wh2_temp);
-
- return 1;
-}
-
-static int silvercrest_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- /* FIXME validate the received message better */
- if (bb[1][0] == 0xF8 &&
- bb[2][0] == 0xF8 &&
- bb[3][0] == 0xF8 &&
- bb[4][0] == 0xF8 &&
- bb[1][1] == 0x4d &&
- bb[2][1] == 0x4d &&
- bb[3][1] == 0x4d &&
- bb[4][1] == 0x4d) {
- /* Pretty sure this is a Silvercrest remote */
- fprintf(stdout, "BUTTON:TYPE=SILVERCREST,CODE=%02x-%02x-%02x-%02x-%02x\n",bb[1][0],bb[0][1],bb[0][2],bb[0][3],bb[0][4]);
-
- if (debug_output)
- debug_callback(bb);
-
- return 1;
- }
- return 0;
-}
-
-static int rubicson_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- int temperature_before_dec;
- int temperature_after_dec;
- int16_t temp;
- float ftemp;
-
- /* FIXME validate the received message better, figure out crc */
- if (bb[1][0] == bb[2][0] && bb[2][0] == bb[3][0] && bb[3][0] == bb[4][0] &&
- bb[4][0] == bb[5][0] && bb[5][0] == bb[6][0] && bb[6][0] == bb[7][0] && bb[7][0] == bb[8][0] &&
- bb[8][0] == bb[9][0] && (bb[5][0] != 0 && bb[5][1] != 0 && bb[5][2] != 0)) {
-
- /* Nible 3,4,5 contains 12 bits of temperature
- * The temperature is signed and scaled by 10 */
- temp = (int16_t)((uint16_t)(bb[0][1] << 12) | (bb[0][2] << 4));
- temp = temp >> 4;
- ftemp = (float)temp/10;
-
- fprintf(stdout, "SENSOR:TYPE=RUBICSON,ID=%X,TEMPERATURE=%f\n",bb[0][0],ftemp);
-
- if (debug_output)
- debug_callback(bb);
-
- return 1;
- }
- return 0;
-}
-
-static int prologue_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- int rid;
-
- int16_t temp2;
- float ftemp;
-
- /* FIXME validate the received message better */
- if (((bb[1][0]&0xF0) == 0x90 && (bb[2][0]&0xF0) == 0x90 && (bb[3][0]&0xF0) == 0x90 && (bb[4][0]&0xF0) == 0x90 &&
- (bb[5][0]&0xF0) == 0x90 && (bb[6][0]&0xF0) == 0x90) ||
- ((bb[1][0]&0xF0) == 0x50 && (bb[2][0]&0xF0) == 0x50 && (bb[3][0]&0xF0) == 0x50 && (bb[4][0]&0xF0) == 0x50)) {
-
- /* Prologue sensor */
- temp2 = (int16_t)((uint16_t)(bb[1][2] << 8) | (bb[1][3]&0xF0));
- temp2 = temp2 >> 4;
- ftemp = (float)temp2/10;
- rid = ((bb[1][0]&0x0F)<<4)|(bb[1][1]&0xF0)>>4;
- fprintf(stdout,
- "SENSOR:TYPE=PROLOGUE,BUTTON=%d,BATTERY=%s,TEMPERATURE=%f,HUMIDITY=%d,CHANNEL=%d,ID=%d,RID=%02x\n",
- bb[1][1]&0x04?1:0,
- bb[1][1]&0x08?"Ok":"Low",
- ftemp,
- ((bb[1][3]&0x0F)<<4)|(bb[1][4]>>4),
- (int)((bb[1][1]&0x03)+1),
- (int)((bb[1][0]&0xF0)>>4),
- rid);
-
- if (debug_output)
- debug_callback(bb);
-
- return 1;
- }
- return 0;
-}
-
-static int waveman_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- /* Two bits map to 2 states, 0 1 -> 0 and 1 1 -> 1 */
- int i;
- uint8_t nb[3] = {0};
-
- if (((bb[0][0]&0x55)==0x55) && ((bb[0][1]&0x55)==0x55) && ((bb[0][2]&0x55)==0x55) && ((bb[0][3]&0x55)==0x00)) {
- for (i=0 ; i<3 ; i++) {
- nb[i] |= ((bb[0][i]&0xC0)==0xC0) ? 0x00 : 0x01;
- nb[i] |= ((bb[0][i]&0x30)==0x30) ? 0x00 : 0x02;
- nb[i] |= ((bb[0][i]&0x0C)==0x0C) ? 0x00 : 0x04;
- nb[i] |= ((bb[0][i]&0x03)==0x03) ? 0x00 : 0x08;
- }
-
- fprintf(stdout,
- "BUTTON:TYPE=WAVEMAN,ID=%c,CHANNEL=%d,BUTTON=%d,STATE=%s\n",
- 'A'+nb[0],
- (int)((nb[1]>>2)+1),
- (int)((nb[1]&3)+1),
- ((nb[2]==0xe) ? "on" : "off"));
-
- if (debug_output)
- debug_callback(bb);
-
- return 1;
- }
- return 0;
-}
-
-static int steffen_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
-
- if (bb[0][0]==0x00 && ((bb[1][0]&0x07)==0x07) && bb[1][0]==bb[2][0] && bb[2][0]==bb[3][0]) {
-
- fprintf(stdout, "BUTTON:TYPE=STEFFAN,CODE=%d%d%d%d%d,",(bb[1][0]&0x80)>>7, (bb[1][0]&0x40)>>6, (bb[1][0]&0x20)>>5, (bb[1][0]&0x10)>>4, (bb[1][0]&0x08)>>3);
-
- if ((bb[1][2]&0x0f)==0x0e)
- fprintf(stdout, "BUTTON=A,");
- else if ((bb[1][2]&0x0f)==0x0d)
- fprintf(stdout, "BUTTON=B,");
- else if ((bb[1][2]&0x0f)==0x0b)
- fprintf(stdout, "BUTTON=C,");
- else if ((bb[1][2]&0x0f)==0x07)
- fprintf(stdout, "BUTTON=D,");
- else if ((bb[1][2]&0x0f)==0x0f)
- fprintf(stdout, "BUTTON=ALL,");
- else
- fprintf(stdout, "BUTTON=UNKNOWN,");
-
- if ((bb[1][2]&0xf0)==0xf0) {
- fprintf(stdout, "STATE=OFF\n");
- } else {
- fprintf(stdout, "STATE=ON\n");
- }
-
- if (debug_output)
- debug_callback(bb);
-
- return 1;
- }
- return 0;
-}
-
-
-uint16_t AD_POP(uint8_t bb[BITBUF_COLS], uint8_t bits, uint8_t bit) {
- uint16_t val = 0;
- uint8_t i, byte_no, bit_no;
- for (i=0;i=1&&dec[0]<=3?types[dec[0]-1]:"?",dec[1],dec[2],dec[3]|dec[4]<<8,dec[5]|dec[6]<<8,dec[7]|dec[8]<<8);
-
- return 1;
-}
-
-static int ws2000_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- // based on http://www.dc3yc.privat.t-online.de/protocol.htm
- uint8_t dec[13];
- uint8_t nibbles=0;
- uint8_t bit=11; // preamble
- char* types[]={"!AS3", "AS2000/ASH2000/S2000/S2001A/S2001IA/ASH2200/S300IA", "!S2000R", "!S2000W", "S2001I/S2001ID", "!S2500H", "!Pyrano", "!KS200/KS300"};
- uint8_t check_calculated=0, sum_calculated=0;
- uint8_t i;
- uint8_t stopbit;
- uint8_t sum_received;
-
- dec[0] = AD_POP (bb[0], 4, bit); bit+=4;
- stopbit= AD_POP (bb[0], 1, bit); bit+=1;
- if (!stopbit) {
-//fprintf(stderr, "!stopbit\n");
- return 0;
- }
- check_calculated ^= dec[0];
- sum_calculated += dec[0];
-
- // read nibbles with stopbit ...
- for (i = 1; i <= (dec[0]==4?12:8); i++) {
- dec[i] = AD_POP (bb[0], 4, bit); bit+=4;
- stopbit= AD_POP (bb[0], 1, bit); bit+=1;
- if (!stopbit) {
-//fprintf(stderr, "!stopbit %i\n", i);
- return 0;
- }
- check_calculated ^= dec[i];
- sum_calculated += dec[i];
- nibbles++;
- }
-
- if (check_calculated) {
-//fprintf(stderr, "check_calculated (%d) != 0\n", check_calculated);
- return 0;
- }
-
- // Read sum
- sum_received = AD_POP (bb[0], 4, bit); bit+=4;
- sum_calculated+=5;
- sum_calculated&=0xF;
- if (sum_received != sum_calculated) {
-//fprintf(stderr, "sum_received (%d) != sum_calculated (%d) ", sum_received, sum_calculated);
- return 0;
- }
-
-//for (i = 0; i < nibbles; i++) fprintf(stderr, "%02X ", dec[i]); fprintf(stderr, "\n");
-
- fprintf(stdout, "SENSOR:TYPE=ELV-WS-2000,MODEL=%s,CODE=%d,TEMPERATURE=%s%d.%d,HUMIDITY=%d.%d",dec[0]<=7?types[dec[0]]:"?",dec[1]&7,dec[1]&8?"-":"",dec[4]*10+dec[3],dec[2],dec[7]*10+dec[6], dec[5]);
- if(dec[0]==4) {
- fprintf(stdout, "PRESSURE=%d\n", 200+dec[10]*100+dec[9]*10+dec[8]);
- } else {
- fprintf(stdout, "\n");
- }
-
- return 1;
-}
-
-// ** Acurite 5n1 functions **
-
-const float acurite_winddirections[] =
- { 337.5, 315.0, 292.5, 270.0, 247.5, 225.0, 202.5, 180,
- 157.5, 135.0, 112.5, 90.0, 67.5, 45.0, 22.5, 0.0 };
-
-static int acurite_raincounter = 0;
-
-static int acurite_crc(uint8_t row[BITBUF_COLS], int cols) {
- // sum of first n-1 bytes modulo 256 should equal nth byte
- int i;
- int sum = 0;
- for ( i=0; i < cols; i++)
- sum += row[i];
- if ( sum % 256 == row[cols] )
- return 1;
- else
- return 0;
-}
-
-static int acurite_detect(uint8_t *pRow) {
- int i;
- if ( pRow[0] != 0x00 ) {
- // invert bits due to wierd issue
- for (i = 0; i < 8; i++)
- pRow[i] = ~pRow[i] & 0xFF;
- pRow[0] |= pRow[8]; // fix first byte that has mashed leading bit
-
- if (acurite_crc(pRow, 7))
- return 1; // passes crc check
- }
- return 0;
-}
-
-static float acurite_getTemp (uint8_t highbyte, uint8_t lowbyte) {
- // range -40 to 158 F
- int highbits = (highbyte & 0x0F) << 7 ;
- int lowbits = lowbyte & 0x7F;
- int rawtemp = highbits | lowbits;
- float temp = (rawtemp - 400) / 10.0;
- return temp;
-}
-
-static int acurite_getWindSpeed (uint8_t highbyte, uint8_t lowbyte) {
- // range: 0 to 159 kph
- int highbits = ( highbyte & 0x1F) << 3;
- int lowbits = ( lowbyte & 0x70 ) >> 4;
- int speed = highbits | lowbits;
- return speed;
-}
-
-static float acurite_getWindDirection (uint8_t byte) {
- // 16 compass points, ccw from (NNW) to 15 (N)
- int direction = byte & 0x0F;
- return acurite_winddirections[direction];
-}
-
-static int acurite_getHumidity (uint8_t byte) {
- // range: 1 to 99 %RH
- int humidity = byte & 0x7F;
- return humidity;
-}
-
-static int acurite_getRainfallCounter (uint8_t highbyte, uint8_t lowbyte) {
- // range: 0 to 99.99 in, 0.01 in incr., rolling counter?
- int highbits = (highbyte & 0x3F) << 7 ;
- int lowbits = lowbyte & 0x7F;
- int raincounter = highbits | lowbits;
- return raincounter;
-}
-
-static int acurite5n1_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS]) {
- // acurite 5n1 weather sensor decoding for rtl_433
- // Jens Jensen 2014
- int i;
- uint8_t *buf = NULL;
- // run through rows til we find one with good crc (brute force)
- for (i=0; i < BITBUF_ROWS; i++) {
- if (acurite_detect(bb[i])) {
- buf = bb[i];
- break; // done
- }
- }
-
- if (buf) {
- // decode packet here
- fprintf(stdout, "SENSOR:TYPE=ACURITE");
- if (debug_output) {
- for (i=0; i < 8; i++)
- fprintf(stderr, "%02X ", buf[i]);
- fprintf(stderr, "CRC OK\n");
- }
-
- if ((buf[2] & 0x0F) == 1) {
- // wind speed, wind direction, rainfall
-
- float rainfall = 0.00;
- int raincounter = 0;
- if (acurite_raincounter > 0) {
- // track rainfall difference after first run
- raincounter = acurite_getRainfallCounter(buf[5], buf[6]);
- rainfall = ( raincounter - acurite_raincounter ) * 0.01;
- } else {
- // capture starting counter
- acurite_raincounter = raincounter;
- }
-
- fprintf(stdout, ",WINDSPEED=%d",
- acurite_getWindSpeed(buf[3], buf[4]));
- fprintf(stdout, ",WINDDIRECTION=%0.1f",
- acurite_getWindDirection(buf[4]));
- fprintf(stdout, ",RAINGAUGE: %0.2f\n", rainfall);
-
- } else if ((buf[2] & 0x0F) == 8) {
- // wind speed, temp, RH
- fprintf(stdout, ",WINDSPEED=%d",
- acurite_getWindSpeed(buf[3], buf[4]));
- fprintf(stdout, ",TEMPERATURE=%2.1f",
- acurite_getTemp(buf[4], buf[5]));
- fprintf(stdout, ",HUMIDITY=%d\n",
- acurite_getHumidity(buf[6]));
- }
- }
- //if (debug_output)
- // debug_callback(bb);
- return 1;
-}
-
-
-// timings based on samp_rate=1024000
-r_device rubicson = {
- /* .id = */ 1,
- /* .name = */ "Rubicson Temperature Sensor",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 1744/4,
- /* .long_limit = */ 3500/4,
- /* .reset_limit = */ 5000/4,
- /* .json_callback = */ &rubicson_callback,
-};
-
-r_device prologue = {
- /* .id = */ 2,
- /* .name = */ "Prologue Temperature Sensor",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 3500/4,
- /* .long_limit = */ 7000/4,
- /* .reset_limit = */ 15000/4,
- /* .json_callback = */ &prologue_callback,
-};
-
-r_device silvercrest = {
- /* .id = */ 3,
- /* .name = */ "Silvercrest Remote Control",
- /* .modulation = */ OOK_PWM_P,
- /* .short_limit = */ 600/4,
- /* .long_limit = */ 5000/4,
- /* .reset_limit = */ 15000/4,
- /* .json_callback = */ &silvercrest_callback,
-};
-
-r_device tech_line_fws_500 = {
- /* .id = */ 4,
- /* .name = */ "Tech Line FWS-500 Sensor",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 3500/4,
- /* .long_limit = */ 7000/4,
- /* .reset_limit = */ 15000/4,
- // /* .json_callback = */ &rubicson_callback,
-};
-
-r_device generic_hx2262 = {
- /* .id = */ 5,
- /* .name = */ "Window/Door sensor",
- /* .modulation = */ OOK_PWM_P,
- /* .short_limit = */ 1300/4,
- /* .long_limit = */ 10000/4,
- /* .reset_limit = */ 40000/4,
- // /* .json_callback = */ &silvercrest_callback,
-};
-
-r_device technoline_ws9118 = {
- /* .id = */ 6,
- /* .name = */ "Technoline WS9118",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 1800/4,
- /* .long_limit = */ 3500/4,
- /* .reset_limit = */ 15000/4,
- /* .json_callback = */ &debug_callback,
-};
-
-
-r_device elv_em1000 = {
- /* .id = */ 7,
- /* .name = */ "ELV EM 1000",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 750/4,
- /* .long_limit = */ 7250/4,
- /* .reset_limit = */ 30000/4,
- /* .json_callback = */ &em1000_callback,
-};
-
-r_device elv_ws2000 = {
- /* .id = */ 8,
- /* .name = */ "ELV WS 2000",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ (602+(1155-602)/2)/4,
- /* .long_limit = */ ((1755635-1655517)/2)/4, // no repetitions
- /* .reset_limit = */ ((1755635-1655517)*2)/4,
- /* .json_callback = */ &ws2000_callback,
-};
-
-r_device waveman = {
- /* .id = */ 6,
- /* .name = */ "Waveman Switch Transmitter",
- /* .modulation = */ OOK_PWM_P,
- /* .short_limit = */ 1000/4,
- /* .long_limit = */ 8000/4,
- /* .reset_limit = */ 30000/4,
- /* .json_callback = */ &waveman_callback,
-};
-
-r_device steffen = {
- /* .id = */ 9,
- /* .name = */ "Steffen Switch Transmitter",
- /* .modulation = */ OOK_PWM_D,
- /* .short_limit = */ 140,
- /* .long_limit = */ 270,
- /* .reset_limit = */ 1500,
- /* .json_callback = */ &steffen_callback,
-};
-
-r_device acurite5n1 = {
- /* .id = */ 10,
- /* .name = */ "Acurite 5n1 Weather Station",
- /* .modulation = */ OOK_PWM_P,
- /* .short_limit = */ 75,
- /* .long_limit = */ 220,
- /* .reset_limit = */ 20000,
- /* .json_callback = */ &acurite5n1_callback,
-};
-
-r_device wh2 = {
- /* .id = */ 11,
- /* .name = */ "WH2 Weather Station",
- /* .modulation = */ OOK_PWM_P,
- /* .short_limit = */ 150,
- /* .long_limit = */ 400,
- /* .reset_limit = */ 20000,
- /* .json_callback = */ &wh2_callback,
-};
-
struct protocol_state {
- int (*callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS]);
+ int (*callback)(uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]);
/* bits state */
int bits_col_idx;
@@ -718,7 +101,7 @@ struct protocol_state {
int bits_bit_col_idx;
uint8_t bits_buffer[BITBUF_ROWS][BITBUF_COLS];
int16_t bits_per_row[BITBUF_ROWS];
- int bit_rows;
+ int bit_rows;
unsigned int modulation;
/* demod state */
@@ -740,13 +123,12 @@ struct protocol_state {
};
-
struct dm_state {
FILE *file;
int save_data;
int32_t level_limit;
int32_t decimation_level;
- int16_t filter_buffer[MAXIMAL_BUF_LENGTH+FILTER_ORDER];
+ int16_t filter_buffer[MAXIMAL_BUF_LENGTH + FILTER_ORDER];
int16_t* f_buf;
int analyze;
int debug_mode;
@@ -764,33 +146,31 @@ struct dm_state {
};
-void usage(void)
-{
+void usage(void) {
fprintf(stderr,
- "rtl_433, an ISM band generic data receiver for RTL2832 based DVB-T receivers\n\n"
- "Usage:\t[-d device_index (default: 0)]\n"
- "\t[-g gain (default: 0 for auto)]\n"
- "\t[-a analyze mode, print a textual description of the signal]\n"
- "\t[-t signal auto save, use it together with analyze mode (-a -t)\n"
- "\t[-l change the detection level used to determine pulses (0-3200) default: %i]\n"
- "\t[-f [-f...] receive frequency[s], default: %i Hz]\n"
- "\t[-s samplerate (default: %i Hz)]\n"
- "\t[-S force sync output (default: async)]\n"
- "\t[-r read data from file instead of from a receiver]\n"
- "\t[-p ppm_error (default: 0)]\n"
- "\t[-r test file name (indata)]\n"
- "\t[-m test file mode (0 rtl_sdr data, 1 rtl_433 data)]\n"
- "\t[-D print debug info on event\n"
- "\t[-z override short value\n"
- "\t[-x override long value\n"
- "\tfilename (a '-' dumps samples to stdout)\n\n", DEFAULT_LEVEL_LIMIT, DEFAULT_FREQUENCY, DEFAULT_SAMPLE_RATE);
+ "rtl_433, an ISM band generic data receiver for RTL2832 based DVB-T receivers\n\n"
+ "Usage:\t[-d device_index (default: 0)]\n"
+ "\t[-g gain (default: 0 for auto)]\n"
+ "\t[-a analyze mode, print a textual description of the signal]\n"
+ "\t[-t signal auto save, use it together with analyze mode (-a -t)\n"
+ "\t[-l change the detection level used to determine pulses (0-3200) default: %i]\n"
+ "\t[-f [-f...] receive frequency[s], default: %i Hz]\n"
+ "\t[-s samplerate (default: %i Hz)]\n"
+ "\t[-S force sync output (default: async)]\n"
+ "\t[-r read data from file instead of from a receiver]\n"
+ "\t[-p ppm_error (default: 0)]\n"
+ "\t[-r test file name (indata)]\n"
+ "\t[-m test file mode (0 rtl_sdr data, 1 rtl_433 data)]\n"
+ "\t[-D print debug info on event\n"
+ "\t[-z override short value\n"
+ "\t[-x override long value\n"
+ "\tfilename (a '-' dumps samples to stdout)\n\n", DEFAULT_LEVEL_LIMIT, DEFAULT_FREQUENCY, DEFAULT_SAMPLE_RATE);
exit(1);
}
#ifdef _WIN32
BOOL WINAPI
-sighandler(int signum)
-{
+sighandler(int signum) {
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Signal caught, exiting!\n");
do_exit = 1;
@@ -800,9 +180,12 @@ sighandler(int signum)
return FALSE;
}
#else
-static void sighandler(int signum)
-{
- fprintf(stderr, "Signal caught, exiting!\n");
+static void sighandler(int signum) {
+ if (signum == SIGPIPE) {
+ signal(SIGPIPE,SIG_IGN);
+ } else {
+ fprintf(stderr, "Signal caught, exiting!\n");
+ }
do_exit = 1;
rtlsdr_cancel_async(dev);
}
@@ -811,8 +194,8 @@ static void sighandler(int signum)
/* precalculate lookup table for envelope detection */
static void calc_squares() {
int i;
- for (i=0 ; i<256 ; i++)
- scaled_squares[i] = (128-i) * (128-i);
+ for (i = 0; i < 256; i++)
+ scaled_squares[i] = (128 - i) * (128 - i);
}
/** This will give a noisy envelope of OOK/ASK signals
@@ -821,21 +204,20 @@ static void calc_squares() {
* @returns pointer to the input buffer
*/
-static void envelope_detect(unsigned char *buf, uint32_t len, int decimate)
-{
+static void envelope_detect(unsigned char *buf, uint32_t len, int decimate) {
uint16_t* sample_buffer = (uint16_t*) buf;
unsigned int i;
unsigned op = 0;
- unsigned int stride = 1<bits_buffer, 0 ,BITBUF_ROWS*BITBUF_COLS);
- memset(p->bits_per_row, 0 ,BITBUF_ROWS);
+ memset(p->bits_buffer, 0, BITBUF_ROWS * BITBUF_COLS);
+ memset(p->bits_per_row, 0, BITBUF_ROWS);
p->bits_col_idx = 0;
p->bits_bit_col_idx = 7;
p->bits_row_idx = 0;
@@ -843,14 +225,14 @@ static void demod_reset_bits_packet(struct protocol_state* p) {
}
static void demod_add_bit(struct protocol_state* p, int bit) {
- p->bits_buffer[p->bits_row_idx][p->bits_col_idx] |= bit<bits_bit_col_idx;
+ p->bits_buffer[p->bits_row_idx][p->bits_col_idx] |= bit << p->bits_bit_col_idx;
p->bits_bit_col_idx--;
- if (p->bits_bit_col_idx<0) {
+ if (p->bits_bit_col_idx < 0) {
p->bits_bit_col_idx = 7;
p->bits_col_idx++;
- if (p->bits_col_idx>BITBUF_COLS-1) {
- p->bits_col_idx = BITBUF_COLS-1;
-// fprintf(stderr, "p->bits_col_idx>%i!\n", BITBUF_COLS-1);
+ if (p->bits_col_idx > BITBUF_COLS - 1) {
+ p->bits_col_idx = BITBUF_COLS - 1;
+ // fprintf(stderr, "p->bits_col_idx>%i!\n", BITBUF_COLS-1);
}
}
p->bits_per_row[p->bit_rows]++;
@@ -860,33 +242,33 @@ static void demod_next_bits_packet(struct protocol_state* p) {
p->bits_col_idx = 0;
p->bits_row_idx++;
p->bits_bit_col_idx = 7;
- if (p->bits_row_idx>BITBUF_ROWS-1) {
- p->bits_row_idx = BITBUF_ROWS-1;
+ if (p->bits_row_idx > BITBUF_ROWS - 1) {
+ p->bits_row_idx = BITBUF_ROWS - 1;
//fprintf(stderr, "p->bits_row_idx>%i!\n", BITBUF_ROWS-1);
}
p->bit_rows++;
- if (p->bit_rows > BITBUF_ROWS-1)
- p->bit_rows -=1;
+ if (p->bit_rows > BITBUF_ROWS - 1)
+ p->bit_rows -= 1;
}
static void demod_print_bits_packet(struct protocol_state* p) {
- int i,j,k;
+ int i, j, k;
fprintf(stderr, "\n");
- for (i=0 ; ibit_rows+1 ; i++) {
- fprintf(stderr, "[%02d] {%d} ",i, p->bits_per_row[i]);
- for (j=0 ; j<((p->bits_per_row[i]+8)/8) ; j++) {
- fprintf(stderr, "%02x ", p->bits_buffer[i][j]);
+ for (i = 0; i < p->bit_rows + 1; i++) {
+ fprintf(stderr, "[%02d] {%d} ", i, p->bits_per_row[i]);
+ for (j = 0; j < ((p->bits_per_row[i] + 8) / 8); j++) {
+ fprintf(stderr, "%02x ", p->bits_buffer[i][j]);
}
fprintf(stderr, ": ");
- for (j=0 ; j<((p->bits_per_row[i]+8)/8) ; j++) {
- for (k=7 ; k>=0 ; k--) {
- if (p->bits_buffer[i][j] & 1<bits_per_row[i] + 8) / 8); j++) {
+ for (k = 7; k >= 0; k--) {
+ if (p->bits_buffer[i][j] & 1 << k)
fprintf(stderr, "1");
else
fprintf(stderr, "0");
}
-// fprintf(stderr, "=0x%x ",demod->bits_buffer[i][j]);
+ // fprintf(stderr, "=0x%x ",demod->bits_buffer[i][j]);
fprintf(stderr, " ");
}
fprintf(stderr, "\n");
@@ -896,21 +278,21 @@ static void demod_print_bits_packet(struct protocol_state* p) {
}
static void register_protocol(struct dm_state *demod, r_device *t_dev) {
- struct protocol_state *p = calloc(1,sizeof(struct protocol_state));
- p->short_limit = (float)t_dev->short_limit/((float)DEFAULT_SAMPLE_RATE/(float)samp_rate);
- p->long_limit = (float)t_dev->long_limit /((float)DEFAULT_SAMPLE_RATE/(float)samp_rate);
- p->reset_limit = (float)t_dev->reset_limit/((float)DEFAULT_SAMPLE_RATE/(float)samp_rate);
- p->modulation = t_dev->modulation;
- p->callback = t_dev->json_callback;
+ struct protocol_state *p = calloc(1, sizeof (struct protocol_state));
+ p->short_limit = (float) t_dev->short_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate);
+ p->long_limit = (float) t_dev->long_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate);
+ p->reset_limit = (float) t_dev->reset_limit / ((float) DEFAULT_SAMPLE_RATE / (float) samp_rate);
+ p->modulation = t_dev->modulation;
+ p->callback = t_dev->json_callback;
demod_reset_bits_packet(p);
demod->r_devs[demod->r_dev_num] = p;
demod->r_dev_num++;
- fprintf(stderr, "Registering protocol[%02d] %s\n",demod->r_dev_num, t_dev->name);
+ fprintf(stderr, "Registering protocol[%02d] %s\n", demod->r_dev_num, t_dev->name);
if (demod->r_dev_num > MAX_PROTOCOLS)
- fprintf(stderr, "Max number of protocols reached %d\n",MAX_PROTOCOLS);
+ fprintf(stderr, "Max number of protocols reached %d\n", MAX_PROTOCOLS);
}
@@ -923,13 +305,13 @@ static unsigned int pulse_start = 0;
static unsigned int pulse_end = 0;
static unsigned int pulse_avg = 0;
static unsigned int signal_start = 0;
-static unsigned int signal_end = 0;
-static unsigned int signal_pulse_data[4000][3] = {{0}};
+static unsigned int signal_end = 0;
+static unsigned int signal_pulse_data[4000][3] = {
+ {0}};
static unsigned int signal_pulse_counter = 0;
-
static void classify_signal() {
- unsigned int i,k, max=0, min=1000000, t;
+ unsigned int i, k, max = 0, min = 1000000, t;
unsigned int delta, count_min, count_max, min_new, max_new, p_limit;
unsigned int a[3], b[2], a_cnt[3], a_new[3], b_new[2];
unsigned int signal_distance_data[4000] = {0};
@@ -939,7 +321,7 @@ static void classify_signal() {
if (!signal_pulse_data[0][0])
return;
- for (i=0 ; i<1000 ; i++) {
+ for (i = 0; i < 1000; i++) {
if (signal_pulse_data[i][0] > 0) {
//fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\n",
//i, signal_pulse_data[i][0], signal_pulse_data[i][1],
@@ -950,96 +332,99 @@ static void classify_signal() {
min = signal_pulse_data[i][2];
}
}
- t=(max+min)/2;
+ t = (max + min) / 2;
//fprintf(stderr, "\n\nMax: %d, Min: %d t:%d\n", max, min, t);
- delta = (max - min)*(max-min);
+ delta = (max - min)*(max - min);
//TODO use Lloyd-Max quantizer instead
- k=1;
- while((k < 10) && (delta > 0)) {
- min_new = 0; count_min = 0;
- max_new = 0; count_max = 0;
-
- for (i=0 ; i < 1000 ; i++) {
+ k = 1;
+ while ((k < 10) && (delta > 0)) {
+ min_new = 0;
+ count_min = 0;
+ max_new = 0;
+ count_max = 0;
+
+ for (i = 0; i < 1000; i++) {
if (signal_pulse_data[i][0] > 0) {
if (signal_pulse_data[i][2] < t) {
min_new = min_new + signal_pulse_data[i][2];
count_min++;
- }
- else {
+ } else {
max_new = max_new + signal_pulse_data[i][2];
count_max++;
}
}
}
- min_new = min_new / count_min;
- max_new = max_new / count_max;
+ if (count_min != 0 && count_max != 0) {
+ min_new = min_new / count_min;
+ max_new = max_new / count_max;
+ }
delta = (min - min_new)*(min - min_new) + (max - max_new)*(max - max_new);
min = min_new;
max = max_new;
- t = (min + max)/2;
+ t = (min + max) / 2;
- fprintf(stderr, "Iteration %d. t: %d min: %d (%d) max: %d (%d) delta %d\n", k,t, min, count_min, max, count_max, delta);
+ fprintf(stderr, "Iteration %d. t: %d min: %d (%d) max: %d (%d) delta %d\n", k, t, min, count_min, max, count_max, delta);
k++;
}
- for (i=0 ; i<1000 ; i++) {
+ for (i = 0; i < 1000; i++) {
if (signal_pulse_data[i][0] > 0) {
//fprintf(stderr, "%d\n", signal_pulse_data[i][1]);
}
}
/* 50% decision limit */
- if (max/min > 1) {
+ if (min != 0 && max / min > 1) {
fprintf(stderr, "Pulse coding: Short pulse length %d - Long pulse length %d\n", min, max);
signal_type = 2;
} else {
- fprintf(stderr, "Distance coding: Pulse length %d\n", (min+max)/2);
+ fprintf(stderr, "Distance coding: Pulse length %d\n", (min + max) / 2);
signal_type = 1;
}
- p_limit = (max+min)/2;
+ p_limit = (max + min) / 2;
/* Initial guesses */
a[0] = 1000000;
a[2] = 0;
- for (i=1 ; i<1000 ; i++) {
+ for (i = 1; i < 1000; i++) {
if (signal_pulse_data[i][0] > 0) {
-// fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\t d:%d\n",
-// i, signal_pulse_data[i][0], signal_pulse_data[i][1],
-// signal_pulse_data[i][2], signal_pulse_data[i][0]-signal_pulse_data[i-1][1]);
- signal_distance_data[i-1] = signal_pulse_data[i][0]-signal_pulse_data[i-1][1];
- if (signal_distance_data[i-1] > a[2])
- a[2] = signal_distance_data[i-1];
- if (signal_distance_data[i-1] <= a[0])
- a[0] = signal_distance_data[i-1];
+ // fprintf(stderr, "[%03d] s: %d\t e:\t %d\t l:%d\t d:%d\n",
+ // i, signal_pulse_data[i][0], signal_pulse_data[i][1],
+ // signal_pulse_data[i][2], signal_pulse_data[i][0]-signal_pulse_data[i-1][1]);
+ signal_distance_data[i - 1] = signal_pulse_data[i][0] - signal_pulse_data[i - 1][1];
+ if (signal_distance_data[i - 1] > a[2])
+ a[2] = signal_distance_data[i - 1];
+ if (signal_distance_data[i - 1] <= a[0])
+ a[0] = signal_distance_data[i - 1];
}
}
min = a[0];
max = a[2];
- a[1] = (a[0]+a[2])/2;
-// for (i=0 ; i<1 ; i++) {
-// b[i] = (a[i]+a[i+1])/2;
-// }
- b[0] = (a[0]+a[1])/2;
- b[1] = (a[1]+a[2])/2;
-// fprintf(stderr, "a[0]: %d\t a[1]: %d\t a[2]: %d\t\n",a[0],a[1],a[2]);
-// fprintf(stderr, "b[0]: %d\t b[1]: %d\n",b[0],b[1]);
-
- k=1;
+ a[1] = (a[0] + a[2]) / 2;
+ // for (i=0 ; i<1 ; i++) {
+ // b[i] = (a[i]+a[i+1])/2;
+ // }
+ b[0] = (a[0] + a[1]) / 2;
+ b[1] = (a[1] + a[2]) / 2;
+ // fprintf(stderr, "a[0]: %d\t a[1]: %d\t a[2]: %d\t\n",a[0],a[1],a[2]);
+ // fprintf(stderr, "b[0]: %d\t b[1]: %d\n",b[0],b[1]);
+
+ k = 1;
delta = 10000000;
- while((k < 10) && (delta > 0)) {
- for (i=0 ; i<3 ; i++) {
+ while ((k < 10) && (delta > 0)) {
+ for (i = 0; i < 3; i++) {
a_new[i] = 0;
a_cnt[i] = 0;
}
- for (i=0 ; i < 1000 ; i++) {
+ for (i = 0; i < 1000; i++) {
if (signal_distance_data[i] > 0) {
if (signal_distance_data[i] < b[0]) {
a_new[0] += signal_distance_data[i];
a_cnt[0]++;
- } else if (signal_distance_data[i] < b[1] && signal_distance_data[i] >= b[0]){
+ } else if (signal_distance_data[i] < b[1] && signal_distance_data[i] >= b[0]) {
a_new[1] += signal_distance_data[i];
a_cnt[1]++;
} else if (signal_distance_data[i] >= b[1]) {
@@ -1049,37 +434,37 @@ static void classify_signal() {
}
}
-// fprintf(stderr, "Iteration %d.", k);
+ // fprintf(stderr, "Iteration %d.", k);
delta = 0;
- for (i=0 ; i<3 ; i++) {
+ for (i = 0; i < 3; i++) {
if (a_cnt[i])
a_new[i] /= a_cnt[i];
- delta += (a[i]-a_new[i])*(a[i]-a_new[i]);
-// fprintf(stderr, "\ta[%d]: %d (%d)", i, a_new[i], a[i]);
+ delta += (a[i] - a_new[i])*(a[i] - a_new[i]);
+ // fprintf(stderr, "\ta[%d]: %d (%d)", i, a_new[i], a[i]);
a[i] = a_new[i];
}
-// fprintf(stderr, " delta %d\n", delta);
+ // fprintf(stderr, " delta %d\n", delta);
if (a[0] < min) {
a[0] = min;
-// fprintf(stderr, "Fixing a[0] = %d\n", min);
+ // fprintf(stderr, "Fixing a[0] = %d\n", min);
}
if (a[2] > max) {
a[0] = max;
-// fprintf(stderr, "Fixing a[2] = %d\n", max);
+ // fprintf(stderr, "Fixing a[2] = %d\n", max);
}
-// if (a[1] == 0) {
-// a[1] = (a[2]+a[0])/2;
-// fprintf(stderr, "Fixing a[1] = %d\n", a[1]);
-// }
-
-// fprintf(stderr, "Iteration %d.", k);
- for (i=0 ; i<2 ; i++) {
-// fprintf(stderr, "\tb[%d]: (%d) ", i, b[i]);
- b[i] = (a[i]+a[i+1])/2;
-// fprintf(stderr, "%d ", b[i]);
+ // if (a[1] == 0) {
+ // a[1] = (a[2]+a[0])/2;
+ // fprintf(stderr, "Fixing a[1] = %d\n", a[1]);
+ // }
+
+ // fprintf(stderr, "Iteration %d.", k);
+ for (i = 0; i < 2; i++) {
+ // fprintf(stderr, "\tb[%d]: (%d) ", i, b[i]);
+ b[i] = (a[i] + a[i + 1]) / 2;
+ // fprintf(stderr, "%d ", b[i]);
}
-// fprintf(stderr, "\n");
+ // fprintf(stderr, "\n");
k++;
}
@@ -1095,46 +480,46 @@ static void classify_signal() {
if (a[1] 0) {
- if (signal_distance_data[i] < (a[0]+a[1])/2) {
-// fprintf(stderr, "0 [%d] %d < %d\n",i, signal_distance_data[i], (a[0]+a[1])/2);
+ if (signal_distance_data[i] < (a[0] + a[1]) / 2) {
+ // fprintf(stderr, "0 [%d] %d < %d\n",i, signal_distance_data[i], (a[0]+a[1])/2);
demod_add_bit(&p, 0);
- } else if ((signal_distance_data[i] > (a[0]+a[1])/2) && (signal_distance_data[i] < (a[1]+a[2])/2)) {
-// fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[0]+a[1])/2);
+ } else if ((signal_distance_data[i] > (a[0] + a[1]) / 2) && (signal_distance_data[i] < (a[1] + a[2]) / 2)) {
+ // fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[0]+a[1])/2);
demod_add_bit(&p, 1);
- } else if (signal_distance_data[i] > (a[1]+a[2])/2) {
-// fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2);
+ } else if (signal_distance_data[i] > (a[1] + a[2]) / 2) {
+ // fprintf(stderr, "0 [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2);
demod_next_bits_packet(&p);
}
- }
+ }
}
demod_print_bits_packet(&p);
}
if (signal_type == 2) {
- for(i=0 ; i<1000 ; i++){
- if(signal_pulse_data[i][2] > 0) {
+ for (i = 0; i < 1000; i++) {
+ if (signal_pulse_data[i][2] > 0) {
if (signal_pulse_data[i][2] < p_limit) {
-// fprintf(stderr, "0 [%d] %d < %d\n",i, signal_pulse_data[i][2], p_limit);
+ // fprintf(stderr, "0 [%d] %d < %d\n",i, signal_pulse_data[i][2], p_limit);
demod_add_bit(&p, 0);
} else {
-// fprintf(stderr, "1 [%d] %d > %d\n",i, signal_pulse_data[i][2], p_limit);
+ // fprintf(stderr, "1 [%d] %d > %d\n",i, signal_pulse_data[i][2], p_limit);
demod_add_bit(&p, 1);
}
- if ((signal_distance_data[i] >= (a[1]+a[2])/2)) {
-// fprintf(stderr, "\\n [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2);
+ if ((signal_distance_data[i] >= (a[1] + a[2]) / 2)) {
+ // fprintf(stderr, "\\n [%d] %d > %d\n",i, signal_distance_data[i], (a[1]+a[2])/2);
demod_next_bits_packet(&p);
}
@@ -1144,7 +529,7 @@ static void classify_signal() {
demod_print_bits_packet(&p);
}
- for (i=0 ; i<1000 ; i++) {
+ for (i = 0; i < 1000; i++) {
signal_pulse_data[i][0] = 0;
signal_pulse_data[i][1] = 0;
signal_pulse_data[i][2] = 0;
@@ -1153,12 +538,10 @@ static void classify_signal() {
};
-
-static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len)
-{
+static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len) {
unsigned int i;
- for (i=0 ; i demod->level_limit) {
if (!signal_start)
signal_start = counter;
@@ -1168,24 +551,24 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len)
signal_pulse_data[signal_pulse_counter][0] = counter;
signal_pulse_data[signal_pulse_counter][1] = -1;
signal_pulse_data[signal_pulse_counter][2] = -1;
- if (debug_output) fprintf(stderr, "pulse_distance %d\n",counter-pulse_end);
- if (debug_output) fprintf(stderr, "pulse_start distance %d\n",pulse_start-prev_pulse_start);
- if (debug_output) fprintf(stderr, "pulse_start[%d] found at sample %d, value = %d\n",pulses_found, counter, buf[i]);
+ if (debug_output) fprintf(stderr, "pulse_distance %d\n", counter - pulse_end);
+ if (debug_output) fprintf(stderr, "pulse_start distance %d\n", pulse_start - prev_pulse_start);
+ if (debug_output) fprintf(stderr, "pulse_start[%d] found at sample %d, value = %d\n", pulses_found, counter, buf[i]);
prev_pulse_start = pulse_start;
- print =0;
+ print = 0;
print2 = 1;
}
}
counter++;
if (buf[i] < demod->level_limit) {
if (print2) {
- pulse_avg += counter-pulse_start;
+ pulse_avg += counter - pulse_start;
if (debug_output) fprintf(stderr, "pulse_end [%d] found at sample %d, pulse length = %d, pulse avg length = %d\n",
- pulses_found, counter, counter-pulse_start, pulse_avg/pulses_found);
+ pulses_found, counter, counter - pulse_start, pulse_avg / pulses_found);
pulse_end = counter;
print2 = 0;
signal_pulse_data[signal_pulse_counter][1] = counter;
- signal_pulse_data[signal_pulse_counter][2] = counter-pulse_start;
+ signal_pulse_data[signal_pulse_counter][2] = counter - pulse_start;
signal_pulse_counter++;
if (signal_pulse_counter >= 4000) {
signal_pulse_counter = 0;
@@ -1195,37 +578,37 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len)
print = 1;
if (signal_start && (pulse_end + 50000 < counter)) {
signal_end = counter - 40000;
- fprintf(stderr, "*** signal_start = %d, signal_end = %d\n",signal_start-10000, signal_end);
- fprintf(stderr, "signal_len = %d, pulses = %d\n", signal_end-(signal_start-10000), pulses_found);
+ fprintf(stderr, "*** signal_start = %d, signal_end = %d\n", signal_start - 10000, signal_end);
+ fprintf(stderr, "signal_len = %d, pulses = %d\n", signal_end - (signal_start - 10000), pulses_found);
pulses_found = 0;
classify_signal();
signal_pulse_counter = 0;
if (demod->sg_buf) {
- int start_pos, signal_bszie, wlen, wrest=0, sg_idx, idx;
+ int start_pos, signal_bszie, wlen, wrest = 0, sg_idx, idx;
char sgf_name[256] = {0};
FILE *sgfp;
- sprintf(sgf_name, "gfile%03d.data",demod->signal_grabber);
+ sprintf(sgf_name, "gfile%03d.data", demod->signal_grabber);
demod->signal_grabber++;
- signal_bszie = 2*(signal_end-(signal_start-10000));
- signal_bszie = (131072-(signal_bszie%131072)) + signal_bszie;
- sg_idx = demod->sg_index-demod->sg_len;
+ signal_bszie = 2 * (signal_end - (signal_start - 10000));
+ signal_bszie = (131072 - (signal_bszie % 131072)) + signal_bszie;
+ sg_idx = demod->sg_index - demod->sg_len;
if (sg_idx < 0)
- sg_idx = SIGNAL_GRABBER_BUFFER-demod->sg_len;
- idx = (i-40000)*2;
- start_pos = sg_idx+idx-signal_bszie;
+ sg_idx = SIGNAL_GRABBER_BUFFER - demod->sg_len;
+ idx = (i - 40000)*2;
+ start_pos = sg_idx + idx - signal_bszie;
fprintf(stderr, "signal_bszie = %d - sg_index = %d\n", signal_bszie, demod->sg_index);
fprintf(stderr, "start_pos = %d - buffer_size = %d\n", start_pos, SIGNAL_GRABBER_BUFFER);
if (signal_bszie > SIGNAL_GRABBER_BUFFER)
fprintf(stderr, "Signal bigger then buffer, signal = %d > buffer %d !!\n", signal_bszie, SIGNAL_GRABBER_BUFFER);
if (start_pos < 0) {
- start_pos = SIGNAL_GRABBER_BUFFER+start_pos;
+ start_pos = SIGNAL_GRABBER_BUFFER + start_pos;
fprintf(stderr, "restart_pos = %d\n", start_pos);
}
- fprintf(stderr, "*** Saving signal to file %s\n",sgf_name);
+ fprintf(stderr, "*** Saving signal to file %s\n", sgf_name);
sgfp = fopen(sgf_name, "wb");
if (!sgfp) {
fprintf(stderr, "Failed to open %s\n", sgf_name);
@@ -1235,12 +618,12 @@ static void pwm_analyze(struct dm_state *demod, int16_t *buf, uint32_t len)
wlen = SIGNAL_GRABBER_BUFFER - start_pos;
wrest = signal_bszie - wlen;
}
- fprintf(stderr, "*** Writing data from %d, len %d\n",start_pos, wlen);
+ fprintf(stderr, "*** Writing data from %d, len %d\n", start_pos, wlen);
fwrite(&demod->sg_buf[start_pos], 1, wlen, sgfp);
if (wrest) {
- fprintf(stderr, "*** Writing data from %d, len %d\n",0, wrest);
- fwrite(&demod->sg_buf[0], 1, wrest, sgfp);
+ fprintf(stderr, "*** Writing data from %d, len %d\n", 0, wrest);
+ fwrite(&demod->sg_buf[0], 1, wrest, sgfp);
}
fclose(sgfp);
@@ -1263,7 +646,7 @@ err:
static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) {
unsigned int i;
- for (i=0 ; i demod->level_limit) {
p->pulse_count = 1;
p->start_c = 1;
@@ -1282,17 +665,17 @@ static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16
demod_add_bit(p, 1);
} else {
demod_next_bits_packet(p);
- p->pulse_count = 0;
+ p->pulse_count = 0;
p->sample_counter = 0;
}
p->pulse_distance = 0;
}
if (p->sample_counter > p->reset_limit) {
- p->start_c = 0;
+ p->start_c = 0;
p->sample_counter = 0;
p->pulse_distance = 0;
if (p->callback)
- events+=p->callback(p->bits_buffer);
+ events += p->callback(p->bits_buffer, p->bits_per_row);
else
demod_print_bits_packet(p);
@@ -1306,19 +689,21 @@ static void pwm_d_decode(struct dm_state *demod, struct protocol_state* p, int16
static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) {
unsigned int i;
- for (i=0 ; i demod->level_limit && !p->start_bit) {
/* start bit detected */
- p->start_bit = 1;
- p->start_c = 1;
+ p->start_bit = 1;
+ p->start_c = 1;
p->sample_counter = 0;
-// fprintf(stderr, "start bit pulse start detected\n");
+ // fprintf(stderr, "start bit pulse start detected\n");
}
if (!p->real_bits && p->start_bit && (buf[i] < demod->level_limit)) {
/* end of startbit */
p->real_bits = 1;
-// fprintf(stderr, "start bit pulse end detected\n");
+ p->pulse_length = 0;
+ p->sample_counter = 0;
+ // fprintf(stderr, "start bit pulse end detected\n");
}
if (p->start_c) p->sample_counter++;
@@ -1326,16 +711,16 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16
if (!p->pulse_start && p->real_bits && (buf[i] > demod->level_limit)) {
/* save the pulse start, it will never be zero */
p->pulse_start = p->sample_counter;
-// fprintf(stderr, "real bit pulse start detected\n");
+ // fprintf(stderr, "real bit pulse start detected\n");
}
if (p->real_bits && p->pulse_start && (buf[i] < demod->level_limit)) {
/* end of pulse */
- p->pulse_length = p->sample_counter-p->pulse_start;
-// fprintf(stderr, "real bit pulse end detected %d\n", p->pulse_length);
-// fprintf(stderr, "space duration %d\n", p->sample_counter);
+ p->pulse_length = p->sample_counter - p->pulse_start;
+ // fprintf(stderr, "real bit pulse end detected %d\n", p->pulse_length);
+ // fprintf(stderr, "space duration %d\n", p->sample_counter);
if (p->pulse_length <= p->short_limit) {
demod_add_bit(p, 1);
@@ -1343,10 +728,10 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16
demod_add_bit(p, 0);
}
p->sample_counter = 0;
- p->pulse_start = 0;
+ p->pulse_start = 0;
}
- if (p->real_bits && p->pulse_length > p->long_limit) {
+ if (p->real_bits && (p->pulse_length > p->long_limit)) {
demod_next_bits_packet(p);
p->start_bit = 0;
@@ -1356,8 +741,9 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16
if (p->sample_counter > p->reset_limit) {
p->start_c = 0;
p->sample_counter = 0;
+ //demod_print_bits_packet(p);
if (p->callback)
- events+=p->callback(p->bits_buffer);
+ events += p->callback(p->bits_buffer, p->bits_per_row);
else
demod_print_bits_packet(p);
demod_reset_bits_packet(p);
@@ -1368,7 +754,56 @@ static void pwm_p_decode(struct dm_state *demod, struct protocol_state* p, int16
}
}
+/* Machester Decode for Oregon Scientific Weather Sensors
+ Decode data streams sent by Oregon Scientific v2.1, and v3 weather sensors.
+ With manchester encoding, both the pulse width and pulse distance vary. Clock sync
+ is recovered from the data stream based on pulse widths and distances exceeding a
+ minimum threashold (short limit* 1.5).
+ */
+static void manchester_decode(struct dm_state *demod, struct protocol_state* p, int16_t *buf, uint32_t len) {
+ unsigned int i;
+
+ if (p->sample_counter == 0)
+ p->sample_counter = p->short_limit*2;
+
+ for (i=0 ; istart_c)
+ p->sample_counter++; /* For this decode type, sample counter is count since last data bit recorded */
+
+ if (!p->pulse_count && (buf[i] > demod->level_limit)) { /* Pulse start (rising edge) */
+ p->pulse_count = 1;
+ if (p->sample_counter > (p->short_limit + (p->short_limit>>1))) {
+ /* Last bit was recorded more than short_limit*1.5 samples ago */
+ /* so this pulse start must be a data edge (rising data edge means bit = 0) */
+ demod_add_bit(p, 0);
+ p->sample_counter=1;
+ p->start_c++; // start_c counts number of bits received
+ }
+ }
+ if (p->pulse_count && (buf[i] <= demod->level_limit)) { /* Pulse end (falling edge) */
+ if (p->sample_counter > (p->short_limit + (p->short_limit>>1))) {
+ /* Last bit was recorded more than "short_limit*1.5" samples ago */
+ /* so this pulse end is a data edge (falling data edge means bit = 1) */
+ demod_add_bit(p, 1);
+ p->sample_counter=1;
+ p->start_c++;
+ }
+ p->pulse_count = 0;
+ }
+
+ if (p->sample_counter > p->reset_limit) {
+ //fprintf(stderr, "manchester_decode number of bits received=%d\n",p->start_c);
+ if (p->callback)
+ events+=p->callback(p->bits_buffer, p->bits_per_row);
+ else
+ demod_print_bits_packet(p);
+ demod_reset_bits_packet(p);
+ p->sample_counter = p->short_limit*2;
+ p->start_c = 0;
+ }
+ }
+}
/** Something that might look like a IIR lowpass filter
*
@@ -1386,28 +821,25 @@ static uint16_t lp_xmem[FILTER_ORDER] = {0};
#define S_CONST (1<>1) + (b[0]*x_buf[0]>>1) + (b[1]*lp_xmem[0]>>1)) >> (F_SCALE-1);
- for (i=1 ; i>1) + (b[0]*x_buf[i]>>1) + (b[1]*x_buf[i-1]>>1)) >> (F_SCALE-1);
+ y_buf[0] = ((a[1] * y_buf[-1] >> 1) + (b[0] * x_buf[0] >> 1) + (b[1] * lp_xmem[0] >> 1)) >> (F_SCALE - 1);
+ for (i = 1; i < len; i++) {
+ y_buf[i] = ((a[1] * y_buf[i - 1] >> 1) + (b[0] * x_buf[i] >> 1) + (b[1] * x_buf[i - 1] >> 1)) >> (F_SCALE - 1);
}
/* Save last sample */
- memcpy(lp_xmem, &x_buf[len-1-FILTER_ORDER], FILTER_ORDER*sizeof(int16_t));
- memcpy(&y_buf[-FILTER_ORDER], &y_buf[len-1-FILTER_ORDER], FILTER_ORDER*sizeof(int16_t));
+ memcpy(lp_xmem, &x_buf[len - 1 - FILTER_ORDER], FILTER_ORDER * sizeof (int16_t));
+ memcpy(&y_buf[-FILTER_ORDER], &y_buf[len - 1 - FILTER_ORDER], FILTER_ORDER * sizeof (int16_t));
//fprintf(stderr, "%d\n", y_buf[0]);
}
-
-static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
-{
+static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) {
struct dm_state *demod = ctx;
uint16_t* sbuf = (uint16_t*) buf;
int i;
@@ -1424,39 +856,42 @@ static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
if (demod->signal_grabber) {
//fprintf(stderr, "[%d] sg_index - len %d\n", demod->sg_index, len );
memcpy(&demod->sg_buf[demod->sg_index], buf, len);
- demod->sg_len =len;
- demod->sg_index +=len;
- if (demod->sg_index+len > SIGNAL_GRABBER_BUFFER)
+ demod->sg_len = len;
+ demod->sg_index += len;
+ if (demod->sg_index + len > SIGNAL_GRABBER_BUFFER)
demod->sg_index = 0;
}
if (demod->debug_mode == 0) {
envelope_detect(buf, len, demod->decimation_level);
- low_pass_filter(sbuf, demod->f_buf, len>>(demod->decimation_level+1));
- } else if (demod->debug_mode == 1){
+ low_pass_filter(sbuf, demod->f_buf, len >> (demod->decimation_level + 1));
+ } else if (demod->debug_mode == 1) {
memcpy(demod->f_buf, buf, len);
}
if (demod->analyze) {
- pwm_analyze(demod, demod->f_buf, len/2);
- }
- {
- for (i=0 ; ir_dev_num ; i++) {
+ pwm_analyze(demod, demod->f_buf, len / 2);
+ } else {
+ for (i = 0; i < demod->r_dev_num; i++) {
switch (demod->r_devs[i]->modulation) {
case OOK_PWM_D:
- pwm_d_decode(demod, demod->r_devs[i], demod->f_buf, len/2);
+ pwm_d_decode(demod, demod->r_devs[i], demod->f_buf, len / 2);
break;
case OOK_PWM_P:
- pwm_p_decode(demod, demod->r_devs[i], demod->f_buf, len/2);
+ pwm_p_decode(demod, demod->r_devs[i], demod->f_buf, len / 2);
+ break;
+ case OOK_MANCHESTER:
+ manchester_decode(demod, demod->r_devs[i], demod->f_buf, len/2);
break;
default:
fprintf(stderr, "Unknown modulation %d in protocol!\n", demod->r_devs[i]->modulation);
}
}
+ fflush(stdout);
}
if (demod->save_data) {
- if (fwrite(demod->f_buf, 1, len>>demod->decimation_level, demod->file) != len>>demod->decimation_level) {
+ if (fwrite(demod->f_buf, 1, len >> demod->decimation_level, demod->file) != len >> demod->decimation_level) {
fprintf(stderr, "Short write, samples lost, exiting!\n");
rtlsdr_cancel_async(dev);
}
@@ -1465,21 +900,20 @@ static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
if (bytes_to_read > 0)
bytes_to_read -= len;
- if(frequencies>1) {
+ if (frequencies > 1) {
time_t rawtime;
time(&rawtime);
- if(difftime(rawtime, rawtime_old)>DEFAULT_HOP_TIME || events>=DEFAULT_HOP_EVENTS) {
- rawtime_old=rawtime;
- events=0;
- do_exit_async=1;
+ if (difftime(rawtime, rawtime_old) > DEFAULT_HOP_TIME || events >= DEFAULT_HOP_EVENTS) {
+ rawtime_old = rawtime;
+ events = 0;
+ do_exit_async = 1;
rtlsdr_cancel_async(dev);
}
}
}
}
-int main(int argc, char **argv)
-{
+int main(int argc, char **argv) {
#ifndef _WIN32
struct sigaction sigact;
#endif
@@ -1494,79 +928,79 @@ int main(int argc, char **argv)
struct dm_state* demod;
uint8_t *buffer;
uint32_t dev_index = 0;
- int frequency_current=0;
+ int frequency_current = 0;
uint32_t out_block_size = DEFAULT_BUF_LENGTH;
int device_count;
char vendor[256], product[256], serial[256];
- demod = malloc(sizeof(struct dm_state));
- memset(demod,0,sizeof(struct dm_state));
+ demod = malloc(sizeof (struct dm_state));
+ memset(demod, 0, sizeof (struct dm_state));
/* initialize tables */
calc_squares();
demod->f_buf = &demod->filter_buffer[FILTER_ORDER];
demod->decimation_level = DEFAULT_DECIMATION_LEVEL;
- demod->level_limit = DEFAULT_LEVEL_LIMIT;
+ demod->level_limit = DEFAULT_LEVEL_LIMIT;
while ((opt = getopt(argc, argv, "x:z:p:Dtam:r:c:l:d:f:g:s:b:n:S::")) != -1) {
switch (opt) {
- case 'd':
- dev_index = atoi(optarg);
- break;
- case 'f':
- if(frequencieslevel_limit = (uint32_t)atof(optarg);
- break;
- case 'n':
- bytes_to_read = (uint32_t)atof(optarg) * 2;
- break;
- case 'c':
- demod->decimation_level = (uint32_t)atof(optarg);
- break;
- case 'a':
- demod->analyze = 1;
- break;
- case 'r':
- test_mode_file = optarg;
- break;
- case 't':
- demod->signal_grabber = 1;
- break;
- case 'm':
- demod->debug_mode = atoi(optarg);
- break;
- case 'S':
- sync_mode = 1;
- break;
- case 'D':
- debug_output = 1;
- break;
- case 'z':
- override_short = atoi(optarg);
- break;
- case 'x':
- override_long = atoi(optarg);
- break;
- default:
- usage();
- break;
+ case 'd':
+ dev_index = atoi(optarg);
+ break;
+ case 'f':
+ if (frequencies < MAX_PROTOCOLS) frequency[frequencies++] = (uint32_t) atof(optarg);
+ else fprintf(stderr, "Max number of frequencies reached %d\n", MAX_PROTOCOLS);
+ break;
+ case 'g':
+ gain = (int) (atof(optarg) * 10); /* tenths of a dB */
+ break;
+ case 'p':
+ ppm_error = atoi(optarg);
+ break;
+ case 's':
+ samp_rate = (uint32_t) atof(optarg);
+ break;
+ case 'b':
+ out_block_size = (uint32_t) atof(optarg);
+ break;
+ case 'l':
+ demod->level_limit = (uint32_t) atof(optarg);
+ break;
+ case 'n':
+ bytes_to_read = (uint32_t) atof(optarg) * 2;
+ break;
+ case 'c':
+ demod->decimation_level = (uint32_t) atof(optarg);
+ break;
+ case 'a':
+ demod->analyze = 1;
+ break;
+ case 'r':
+ test_mode_file = optarg;
+ break;
+ case 't':
+ demod->signal_grabber = 1;
+ break;
+ case 'm':
+ demod->debug_mode = atoi(optarg);
+ break;
+ case 'S':
+ sync_mode = 1;
+ break;
+ case 'D':
+ debug_output = 1;
+ break;
+ case 'z':
+ override_short = atoi(optarg);
+ break;
+ case 'x':
+ override_long = atoi(optarg);
+ break;
+ default:
+ usage();
+ break;
}
}
@@ -1574,33 +1008,41 @@ int main(int argc, char **argv)
register_protocol(demod, &rubicson);
register_protocol(demod, &prologue);
register_protocol(demod, &silvercrest);
-// register_protocol(demod, &generic_hx2262);
-// register_protocol(demod, &technoline_ws9118);
+ // register_protocol(demod, &generic_hx2262);
+ // register_protocol(demod, &technoline_ws9118);
register_protocol(demod, &elv_em1000);
register_protocol(demod, &elv_ws2000);
register_protocol(demod, &waveman);
register_protocol(demod, &steffen);
register_protocol(demod, &acurite5n1);
+ register_protocol(demod, &acurite_th);
+ register_protocol(demod, &acurite_rain_gauge);
+ register_protocol(demod, &lacrossetx);
+ register_protocol(demod, &oregon_scientific);
+ register_protocol(demod, &newkaku);
+ register_protocol(demod, &alectov1);
+ register_protocol(demod, &intertechno);
+ register_protocol(demod, &mebus433);
register_protocol(demod, &wh2);
- if (argc <= optind-1) {
+ if (argc <= optind - 1) {
usage();
} else {
filename = argv[optind];
}
- if(out_block_size < MINIMAL_BUF_LENGTH ||
- out_block_size > MAXIMAL_BUF_LENGTH ){
+ if (out_block_size < MINIMAL_BUF_LENGTH ||
+ out_block_size > MAXIMAL_BUF_LENGTH) {
fprintf(stderr,
- "Output block size wrong value, falling back to default\n");
+ "Output block size wrong value, falling back to default\n");
fprintf(stderr,
- "Minimal length: %u\n", MINIMAL_BUF_LENGTH);
+ "Minimal length: %u\n", MINIMAL_BUF_LENGTH);
fprintf(stderr,
- "Maximal length: %u\n", MAXIMAL_BUF_LENGTH);
+ "Maximal length: %u\n", MAXIMAL_BUF_LENGTH);
out_block_size = DEFAULT_BUF_LENGTH;
}
- buffer = malloc(out_block_size * sizeof(uint8_t));
+ buffer = malloc(out_block_size * sizeof (uint8_t));
device_count = rtlsdr_get_device_count();
if (!device_count) {
@@ -1617,7 +1059,7 @@ int main(int argc, char **argv)
fprintf(stderr, "\n");
fprintf(stderr, "Using device %d: %s\n",
- dev_index, rtlsdr_get_device_name(dev_index));
+ dev_index, rtlsdr_get_device_name(dev_index));
r = rtlsdr_open(&dev, dev_index);
if (r < 0) {
@@ -1634,7 +1076,7 @@ int main(int argc, char **argv)
sigaction(SIGQUIT, &sigact, NULL);
sigaction(SIGPIPE, &sigact, NULL);
#else
- SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
+ SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE);
#endif
/* Set the sample rate */
r = rtlsdr_set_sample_rate(dev, samp_rate);
@@ -1643,11 +1085,11 @@ int main(int argc, char **argv)
else
fprintf(stderr, "Sample rate set to %d.\n", rtlsdr_get_sample_rate(dev)); // Unfortunately, doesn't return real rate
- fprintf(stderr, "Sample rate decimation set to %d. %d->%d\n",demod->decimation_level, samp_rate, samp_rate>>demod->decimation_level);
+ fprintf(stderr, "Sample rate decimation set to %d. %d->%d\n", demod->decimation_level, samp_rate, samp_rate >> demod->decimation_level);
fprintf(stderr, "Bit detection level set to %d.\n", demod->level_limit);
if (0 == gain) {
- /* Enable automatic gain */
+ /* Enable automatic gain */
r = rtlsdr_set_tuner_gain_mode(dev, 0);
if (r < 0)
fprintf(stderr, "WARNING: Failed to enable automatic gain.\n");
@@ -1664,7 +1106,7 @@ int main(int argc, char **argv)
if (r < 0)
fprintf(stderr, "WARNING: Failed to set tuner gain.\n");
else
- fprintf(stderr, "Tuner gain set to %f dB.\n", gain/10.0);
+ fprintf(stderr, "Tuner gain set to %f dB.\n", gain / 10.0);
}
r = rtlsdr_set_freq_correction(dev, ppm_error);
@@ -1672,7 +1114,7 @@ int main(int argc, char **argv)
demod->save_data = 1;
if (!filename) {
demod->save_data = 0;
- } else if(strcmp(filename, "-") == 0) { /* Write samples to stdout */
+ } else if (strcmp(filename, "-") == 0) { /* Write samples to stdout */
demod->file = stdout;
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
@@ -1691,13 +1133,13 @@ int main(int argc, char **argv)
if (test_mode_file) {
int i = 0;
unsigned char test_mode_buf[DEFAULT_BUF_LENGTH];
- fprintf(stderr, "Test mode active. Reading samples from file: %s\n",test_mode_file);
+ fprintf(stderr, "Test mode active. Reading samples from file: %s\n", test_mode_file);
test_mode = fopen(test_mode_file, "r");
if (!test_mode) {
- fprintf(stderr, "Opening file: %s failed!\n",test_mode_file);
+ fprintf(stderr, "Opening file: %s failed!\n", test_mode_file);
goto out;
}
- while(fread(test_mode_buf, 131072, 1, test_mode) != 0) {
+ while (fread(test_mode_buf, 131072, 1, test_mode) != 0) {
rtlsdr_callback(test_mode_buf, 131072, demod);
i++;
}
@@ -1724,17 +1166,17 @@ int main(int argc, char **argv)
break;
}
- if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) {
+ if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t) n_read)) {
n_read = bytes_to_read;
do_exit = 1;
}
- if (fwrite(buffer, 1, n_read, demod->file) != (size_t)n_read) {
+ if (fwrite(buffer, 1, n_read, demod->file) != (size_t) n_read) {
fprintf(stderr, "Short write, samples lost, exiting!\n");
break;
}
- if ((uint32_t)n_read < out_block_size) {
+ if ((uint32_t) n_read < out_block_size) {
fprintf(stderr, "Short read, samples lost, exiting!\n");
break;
}
@@ -1743,25 +1185,25 @@ int main(int argc, char **argv)
bytes_to_read -= n_read;
}
} else {
- if(frequencies==0) {
- frequency[0] = DEFAULT_FREQUENCY;
- frequencies=1;
+ if (frequencies == 0) {
+ frequency[0] = DEFAULT_FREQUENCY;
+ frequencies = 1;
} else {
- time(&rawtime_old);
+ time(&rawtime_old);
}
fprintf(stderr, "Reading samples in async mode...\n");
- while(!do_exit) {
+ while (!do_exit) {
/* Set the frequency */
r = rtlsdr_set_center_freq(dev, frequency[frequency_current]);
if (r < 0)
fprintf(stderr, "WARNING: Failed to set center freq.\n");
else
fprintf(stderr, "Tuned to %u Hz.\n", rtlsdr_get_center_freq(dev));
- r = rtlsdr_read_async(dev, rtlsdr_callback, (void *)demod,
- DEFAULT_ASYNC_BUF_NUMBER, out_block_size);
- do_exit_async=0;
+ r = rtlsdr_read_async(dev, rtlsdr_callback, (void *) demod,
+ DEFAULT_ASYNC_BUF_NUMBER, out_block_size);
+ do_exit_async = 0;
frequency_current++;
- if(frequency_current>frequencies-1) frequency_current=0;
+ if (frequency_current > frequencies - 1) frequency_current = 0;
}
}
@@ -1773,17 +1215,17 @@ int main(int argc, char **argv)
if (demod->file && (demod->file != stdout))
fclose(demod->file);
- for (i=0 ; ir_dev_num ; i++)
+ for (i = 0; i < demod->r_dev_num; i++)
free(demod->r_devs[i]);
if (demod->signal_grabber)
free(demod->sg_buf);
- if(demod)
+ if (demod)
free(demod);
rtlsdr_close(dev);
- free (buffer);
+ free(buffer);
out:
return r >= 0 ? r : -r;
}