- Merged with upstream version
[rtl-433.git] / src / tuner_e4k.c
diff --git a/src/tuner_e4k.c b/src/tuner_e4k.c
deleted file mode 100644 (file)
index 0232f88..0000000
+++ /dev/null
@@ -1,978 +0,0 @@
-/*
- * Elonics E4000 tuner driver
- *
- * (C) 2011-2012 by Harald Welte <laforge@gnumonks.org>
- * (C) 2012 by Sylvain Munaut <tnt@246tNt.com>
- * (C) 2012 by Hoernchen <la@tfc-server.de>
- *
- * All Rights Reserved
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <limits.h>
-#include <stdint.h>
-#include <errno.h>
-#include <string.h>
-#include <stdio.h>
-
-#include <reg_field.h>
-#include <tuner_e4k.h>
-
-#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
-
-/* If this is defined, the limits are somewhat relaxed compared to what the
- * vendor claims is possible */
-#define OUT_OF_SPEC
-
-#define MHZ(x) ((x)*1000*1000)
-#define KHZ(x) ((x)*1000)
-
-uint32_t unsigned_delta(uint32_t a, uint32_t b)
-{
-       if (a > b)
-               return a - b;
-       else
-               return b - a;
-}
-
-/* look-up table bit-width -> mask */
-static const uint8_t width2mask[] = {
-       0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff
-};
-
-/***********************************************************************
- * Register Access */
-
-#if 0
-/*! \brief Write a register of the tuner chip
- *  \param[in] e4k reference to the tuner
- *  \param[in] reg number of the register
- *  \param[in] val value to be written
- *  \returns 0 on success, negative in case of error
- */
-int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val)
-{
-       /* FIXME */
-       return 0;
-}
-
-/*! \brief Read a register of the tuner chip
- *  \param[in] e4k reference to the tuner
- *  \param[in] reg number of the register
- *  \returns positive 8bit register contents on success, negative in case of error
- */
-int e4k_reg_read(struct e4k_state *e4k, uint8_t reg)
-{
-       /* FIXME */
-       return 0;
-}
-#endif
-
-/*! \brief Set or clear some (masked) bits inside a register
- *  \param[in] e4k reference to the tuner
- *  \param[in] reg number of the register
- *  \param[in] mask bit-mask of the value
- *  \param[in] val data value to be written to register
- *  \returns 0 on success, negative in case of error
- */
-static int e4k_reg_set_mask(struct e4k_state *e4k, uint8_t reg,
-                    uint8_t mask, uint8_t val)
-{
-       uint8_t tmp = e4k_reg_read(e4k, reg);
-
-       if ((tmp & mask) == val)
-               return 0;
-
-       return e4k_reg_write(e4k, reg, (tmp & ~mask) | (val & mask));
-}
-
-/*! \brief Write a given field inside a register
- *  \param[in] e4k reference to the tuner
- *  \param[in] field structure describing the field
- *  \param[in] val value to be written
- *  \returns 0 on success, negative in case of error
- */
-static int e4k_field_write(struct e4k_state *e4k, const struct reg_field *field, uint8_t val)
-{
-       int rc;
-       uint8_t mask;
-
-       rc = e4k_reg_read(e4k, field->reg);
-       if (rc < 0)
-               return rc;
-
-       mask = width2mask[field->width] << field->shift;
-
-       return e4k_reg_set_mask(e4k, field->reg, mask, val << field->shift);
-}
-
-/*! \brief Read a given field inside a register
- *  \param[in] e4k reference to the tuner
- *  \param[in] field structure describing the field
- *  \returns positive value of the field, negative in case of error
- */
-static int e4k_field_read(struct e4k_state *e4k, const struct reg_field *field)
-{
-       int rc;
-
-       rc = e4k_reg_read(e4k, field->reg);
-       if (rc < 0)
-               return rc;
-
-       rc = (rc >> field->shift) & width2mask[field->width];
-
-       return rc;
-}
-
-/***********************************************************************
- * Filter Control */
-
-static const uint32_t rf_filt_center_uhf[] = {
-       MHZ(360), MHZ(380), MHZ(405), MHZ(425),
-       MHZ(450), MHZ(475), MHZ(505), MHZ(540),
-       MHZ(575), MHZ(615), MHZ(670), MHZ(720),
-       MHZ(760), MHZ(840), MHZ(890), MHZ(970)
-};
-
-static const uint32_t rf_filt_center_l[] = {
-       MHZ(1300), MHZ(1320), MHZ(1360), MHZ(1410),
-       MHZ(1445), MHZ(1460), MHZ(1490), MHZ(1530),
-       MHZ(1560), MHZ(1590), MHZ(1640), MHZ(1660),
-       MHZ(1680), MHZ(1700), MHZ(1720), MHZ(1750)
-};
-
-static int closest_arr_idx(const uint32_t *arr, unsigned int arr_size, uint32_t freq)
-{
-       unsigned int i, bi = 0;
-       uint32_t best_delta = 0xffffffff;
-
-       /* iterate over the array containing a list of the center
-        * frequencies, selecting the closest one */
-       for (i = 0; i < arr_size; i++) {
-               uint32_t delta = unsigned_delta(freq, arr[i]);
-               if (delta < best_delta) {
-                       best_delta = delta;
-                       bi = i;
-               }
-       }
-
-       return bi;
-}
-
-/* return 4-bit index as to which RF filter to select */
-static int choose_rf_filter(enum e4k_band band, uint32_t freq)
-{
-       int rc;
-
-       switch (band) {
-               case E4K_BAND_VHF2:
-               case E4K_BAND_VHF3:
-                       rc = 0;
-                       break;
-               case E4K_BAND_UHF:
-                       rc = closest_arr_idx(rf_filt_center_uhf,
-                                                ARRAY_SIZE(rf_filt_center_uhf),
-                                                freq);
-                       break;
-               case E4K_BAND_L:
-                       rc = closest_arr_idx(rf_filt_center_l,
-                                                ARRAY_SIZE(rf_filt_center_l),
-                                                freq);
-                       break;
-               default:
-                       rc = -EINVAL;
-                       break;
-       }
-
-       return rc;
-}
-
-/* \brief Automatically select apropriate RF filter based on e4k state */
-int e4k_rf_filter_set(struct e4k_state *e4k)
-{
-       int rc;
-
-       rc = choose_rf_filter(e4k->band, e4k->vco.flo);
-       if (rc < 0)
-               return rc;
-
-       return e4k_reg_set_mask(e4k, E4K_REG_FILT1, 0xF, rc);
-}
-
-/* Mixer Filter */
-static const uint32_t mix_filter_bw[] = {
-       KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
-       KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000),
-       KHZ(4600), KHZ(4200), KHZ(3800), KHZ(3400),
-       KHZ(3300), KHZ(2700), KHZ(2300), KHZ(1900)
-};
-
-/* IF RC Filter */
-static const uint32_t ifrc_filter_bw[] = {
-       KHZ(21400), KHZ(21000), KHZ(17600), KHZ(14700),
-       KHZ(12400), KHZ(10600), KHZ(9000), KHZ(7700),
-       KHZ(6400), KHZ(5300), KHZ(4400), KHZ(3400),
-       KHZ(2600), KHZ(1800), KHZ(1200), KHZ(1000)
-};
-
-/* IF Channel Filter */
-static const uint32_t ifch_filter_bw[] = {
-       KHZ(5500), KHZ(5300), KHZ(5000), KHZ(4800),
-       KHZ(4600), KHZ(4400), KHZ(4300), KHZ(4100),
-       KHZ(3900), KHZ(3800), KHZ(3700), KHZ(3600),
-       KHZ(3400), KHZ(3300), KHZ(3200), KHZ(3100),
-       KHZ(3000), KHZ(2950), KHZ(2900), KHZ(2800),
-       KHZ(2750), KHZ(2700), KHZ(2600), KHZ(2550),
-       KHZ(2500), KHZ(2450), KHZ(2400), KHZ(2300),
-       KHZ(2280), KHZ(2240), KHZ(2200), KHZ(2150)
-};
-
-static const uint32_t *if_filter_bw[] = {
-       mix_filter_bw,
-       ifch_filter_bw,
-       ifrc_filter_bw,
-};
-
-static const uint32_t if_filter_bw_len[] = {
-       ARRAY_SIZE(mix_filter_bw),
-       ARRAY_SIZE(ifch_filter_bw),
-       ARRAY_SIZE(ifrc_filter_bw),
-};
-
-static const struct reg_field if_filter_fields[] = {
-       {
-               E4K_REG_FILT2, 4, 4,
-       },
-       {
-               E4K_REG_FILT3, 0, 5,
-       },
-       {
-               E4K_REG_FILT2, 0, 4,
-       }
-};
-
-static int find_if_bw(enum e4k_if_filter filter, uint32_t bw)
-{
-       if (filter >= ARRAY_SIZE(if_filter_bw))
-               return -EINVAL;
-
-       return closest_arr_idx(if_filter_bw[filter],
-                              if_filter_bw_len[filter], bw);
-}
-
-/*! \brief Set the filter band-width of any of the IF filters
- *  \param[in] e4k reference to the tuner chip
- *  \param[in] filter filter to be configured
- *  \param[in] bandwidth bandwidth to be configured
- *  \returns positive actual filter band-width, negative in case of error
- */
-int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter,
-                        uint32_t bandwidth)
-{
-       int bw_idx;
-       const struct reg_field *field;
-
-       if (filter >= ARRAY_SIZE(if_filter_bw))
-               return -EINVAL;
-
-       bw_idx = find_if_bw(filter, bandwidth);
-
-       field = &if_filter_fields[filter];
-
-       return e4k_field_write(e4k, field, bw_idx);
-}
-
-/*! \brief Enables / Disables the channel filter
- *  \param[in] e4k reference to the tuner chip
- *  \param[in] on 1=filter enabled, 0=filter disabled
- *  \returns 0 success, negative errors
- */
-int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on)
-{
-       return e4k_reg_set_mask(e4k, E4K_REG_FILT3, E4K_FILT3_DISABLE,
-                               on ? 0 : E4K_FILT3_DISABLE);
-}
-
-int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter)
-{
-       const uint32_t *arr;
-       int rc;
-       const struct reg_field *field;
-
-       if (filter >= ARRAY_SIZE(if_filter_bw))
-               return -EINVAL;
-
-       field = &if_filter_fields[filter];
-
-       rc = e4k_field_read(e4k, field);
-       if (rc < 0)
-               return rc;
-
-       arr = if_filter_bw[filter];
-
-       return arr[rc];
-}
-
-
-/***********************************************************************
- * Frequency Control */
-
-#define E4K_FVCO_MIN_KHZ       2600000 /* 2.6 GHz */
-#define E4K_FVCO_MAX_KHZ       3900000 /* 3.9 GHz */
-#define E4K_PLL_Y              65536
-
-#ifdef OUT_OF_SPEC
-#define E4K_FLO_MIN_MHZ                50
-#define E4K_FLO_MAX_MHZ                2200UL
-#else
-#define E4K_FLO_MIN_MHZ                64
-#define E4K_FLO_MAX_MHZ                1700
-#endif
-
-struct pll_settings {
-       uint32_t freq;
-       uint8_t reg_synth7;
-       uint8_t mult;
-};
-
-static const struct pll_settings pll_vars[] = {
-       {KHZ(72400),    (1 << 3) | 7,   48},
-       {KHZ(81200),    (1 << 3) | 6,   40},
-       {KHZ(108300),   (1 << 3) | 5,   32},
-       {KHZ(162500),   (1 << 3) | 4,   24},
-       {KHZ(216600),   (1 << 3) | 3,   16},
-       {KHZ(325000),   (1 << 3) | 2,   12},
-       {KHZ(350000),   (1 << 3) | 1,   8},
-       {KHZ(432000),   (0 << 3) | 3,   8},
-       {KHZ(667000),   (0 << 3) | 2,   6},
-       {KHZ(1200000),  (0 << 3) | 1,   4}
-};
-
-static int is_fvco_valid(uint32_t fvco_z)
-{
-       /* check if the resulting fosc is valid */
-       if (fvco_z/1000 < E4K_FVCO_MIN_KHZ ||
-           fvco_z/1000 > E4K_FVCO_MAX_KHZ) {
-               fprintf(stderr, "[E4K] Fvco %u invalid\n", fvco_z);
-               return 0;
-       }
-
-       return 1;
-}
-
-static int is_fosc_valid(uint32_t fosc)
-{
-       if (fosc < MHZ(16) || fosc > MHZ(30)) {
-               fprintf(stderr, "[E4K] Fosc %u invalid\n", fosc);
-               return 0;
-       }
-
-       return 1;
-}
-
-static int is_z_valid(uint32_t z)
-{
-       if (z > 255) {
-               fprintf(stderr, "[E4K] Z %u invalid\n", z);
-               return 0;
-       }
-
-       return 1;
-}
-
-/*! \brief Determine if 3-phase mixing shall be used or not */
-static int use_3ph_mixing(uint32_t flo)
-{
-       /* this is a magic number somewhre between VHF and UHF */
-       if (flo < MHZ(350))
-               return 1;
-
-       return 0;
-}
-
-/* \brief compute Fvco based on Fosc, Z and X
- * \returns positive value (Fvco in Hz), 0 in case of error */
-static uint64_t compute_fvco(uint32_t f_osc, uint8_t z, uint16_t x)
-{
-       uint64_t fvco_z, fvco_x, fvco;
-
-       /* We use the following transformation in order to
-        * handle the fractional part with integer arithmetic:
-        *  Fvco = Fosc * (Z + X/Y) <=> Fvco = Fosc * Z + (Fosc * X)/Y
-        * This avoids X/Y = 0.  However, then we would overflow a 32bit
-        * integer, as we cannot hold e.g. 26 MHz * 65536 either.
-        */
-       fvco_z = (uint64_t)f_osc * z;
-
-#if 0
-       if (!is_fvco_valid(fvco_z))
-               return 0;
-#endif
-
-       fvco_x = ((uint64_t)f_osc * x) / E4K_PLL_Y;
-
-       fvco = fvco_z + fvco_x;
-
-       return fvco;
-}
-
-static uint32_t compute_flo(uint32_t f_osc, uint8_t z, uint16_t x, uint8_t r)
-{
-       uint64_t fvco = compute_fvco(f_osc, z, x);
-       if (fvco == 0)
-               return -EINVAL;
-
-       return fvco / r;
-}
-
-static int e4k_band_set(struct e4k_state *e4k, enum e4k_band band)
-{
-       int rc;
-
-       switch (band) {
-       case E4K_BAND_VHF2:
-       case E4K_BAND_VHF3:
-       case E4K_BAND_UHF:
-               e4k_reg_write(e4k, E4K_REG_BIAS, 3);
-               break;
-       case E4K_BAND_L:
-               e4k_reg_write(e4k, E4K_REG_BIAS, 0);
-               break;
-       }
-
-       /* workaround: if we don't reset this register before writing to it,
-        * we get a gap between 325-350 MHz */
-       rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, 0);
-       rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, band << 1);
-       if (rc >= 0)
-               e4k->band = band;
-
-       return rc;
-}
-
-/*! \brief Compute PLL parameters for givent target frequency
- *  \param[out] oscp Oscillator parameters, if computation successful
- *  \param[in] fosc Clock input frequency applied to the chip (Hz)
- *  \param[in] intended_flo target tuning frequency (Hz)
- *  \returns actual PLL frequency, as close as possible to intended_flo,
- *          0 in case of error
- */
-uint32_t e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo)
-{
-       uint32_t i;
-       uint8_t r = 2;
-       uint64_t intended_fvco, remainder;
-       uint64_t z = 0;
-       uint32_t x;
-       int flo;
-       int three_phase_mixing = 0;
-       oscp->r_idx = 0;
-
-       if (!is_fosc_valid(fosc))
-               return 0;
-
-       for(i = 0; i < ARRAY_SIZE(pll_vars); ++i) {
-               if(intended_flo < pll_vars[i].freq) {
-                       three_phase_mixing = (pll_vars[i].reg_synth7 & 0x08) ? 1 : 0;
-                       oscp->r_idx = pll_vars[i].reg_synth7;
-                       r = pll_vars[i].mult;
-                       break;
-               }
-       }
-
-       //fprintf(stderr, "[E4K] Fint=%u, R=%u\n", intended_flo, r);
-
-       /* flo(max) = 1700MHz, R(max) = 48, we need 64bit! */
-       intended_fvco = (uint64_t)intended_flo * r;
-
-       /* compute integral component of multiplier */
-       z = intended_fvco / fosc;
-
-       /* compute fractional part.  this will not overflow,
-       * as fosc(max) = 30MHz and z(max) = 255 */
-       remainder = intended_fvco - (fosc * z);
-       /* remainder(max) = 30MHz, E4K_PLL_Y = 65536 -> 64bit! */
-       x = (remainder * E4K_PLL_Y) / fosc;
-       /* x(max) as result of this computation is 65536 */
-
-       flo = compute_flo(fosc, z, x, r);
-
-       oscp->fosc = fosc;
-       oscp->flo = flo;
-       oscp->intended_flo = intended_flo;
-       oscp->r = r;
-//     oscp->r_idx = pll_vars[i].reg_synth7 & 0x0;
-       oscp->threephase = three_phase_mixing;
-       oscp->x = x;
-       oscp->z = z;
-
-       return flo;
-}
-
-int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p)
-{
-       uint8_t val;
-
-       /* program R + 3phase/2phase */
-       e4k_reg_write(e4k, E4K_REG_SYNTH7, p->r_idx);
-       /* program Z */
-       e4k_reg_write(e4k, E4K_REG_SYNTH3, p->z);
-       /* program X */
-       e4k_reg_write(e4k, E4K_REG_SYNTH4, p->x & 0xff);
-       e4k_reg_write(e4k, E4K_REG_SYNTH5, p->x >> 8);
-
-       /* we're in auto calibration mode, so there's no need to trigger it */
-
-       memcpy(&e4k->vco, p, sizeof(e4k->vco));
-
-       /* set the band */
-       if (e4k->vco.flo < MHZ(140))
-               e4k_band_set(e4k, E4K_BAND_VHF2);
-       else if (e4k->vco.flo < MHZ(350))
-               e4k_band_set(e4k, E4K_BAND_VHF3);
-       else if (e4k->vco.flo < MHZ(1135))
-               e4k_band_set(e4k, E4K_BAND_UHF);
-       else
-               e4k_band_set(e4k, E4K_BAND_L);
-
-       /* select and set proper RF filter */
-       e4k_rf_filter_set(e4k);
-
-       return e4k->vco.flo;
-}
-
-/*! \brief High-level tuning API, just specify frquency
- *
- *  This function will compute matching PLL parameters, program them into the
- *  hardware and set the band as well as RF filter.
- *
- *  \param[in] e4k reference to tuner
- *  \param[in] freq frequency in Hz
- *  \returns actual tuned frequency, negative in case of error
- */
-int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq)
-{
-       uint32_t rc;
-       struct e4k_pll_params p;
-
-       /* determine PLL parameters */
-       rc = e4k_compute_pll_params(&p, e4k->vco.fosc, freq);
-       if (!rc)
-               return -EINVAL;
-
-       /* actually tune to those parameters */
-       rc = e4k_tune_params(e4k, &p);
-
-       /* check PLL lock */
-       rc = e4k_reg_read(e4k, E4K_REG_SYNTH1);
-       if (!(rc & 0x01)) {
-               fprintf(stderr, "[E4K] PLL not locked for %u Hz!\n", freq);
-               return -1;
-       }
-
-       return 0;
-}
-
-/***********************************************************************
- * Gain Control */
-
-static const int8_t if_stage1_gain[] = {
-       -3, 6
-};
-
-static const int8_t if_stage23_gain[] = {
-       0, 3, 6, 9
-};
-
-static const int8_t if_stage4_gain[] = {
-       0, 1, 2, 2
-};
-
-static const int8_t if_stage56_gain[] = {
-       3, 6, 9, 12, 15, 15, 15, 15
-};
-
-static const int8_t *if_stage_gain[] = {
-       0,
-       if_stage1_gain,
-       if_stage23_gain,
-       if_stage23_gain,
-       if_stage4_gain,
-       if_stage56_gain,
-       if_stage56_gain
-};
-
-static const uint8_t if_stage_gain_len[] = {
-       0,
-       ARRAY_SIZE(if_stage1_gain),
-       ARRAY_SIZE(if_stage23_gain),
-       ARRAY_SIZE(if_stage23_gain),
-       ARRAY_SIZE(if_stage4_gain),
-       ARRAY_SIZE(if_stage56_gain),
-       ARRAY_SIZE(if_stage56_gain)
-};
-
-static const struct reg_field if_stage_gain_regs[] = {
-       { 0, 0, 0 },
-       { E4K_REG_GAIN3, 0, 1 },
-       { E4K_REG_GAIN3, 1, 2 },
-       { E4K_REG_GAIN3, 3, 2 },
-       { E4K_REG_GAIN3, 5, 2 },
-       { E4K_REG_GAIN4, 0, 3 },
-       { E4K_REG_GAIN4, 3, 3 }
-};
-
-static const int32_t lnagain[] = {
-       -50,    0,
-       -25,    1,
-       0,      4,
-       25,     5,
-       50,     6,
-       75,     7,
-       100,    8,
-       125,    9,
-       150,    10,
-       175,    11,
-       200,    12,
-       250,    13,
-       300,    14,
-};
-
-static const int32_t enhgain[] = {
-       10, 30, 50, 70
-};
-
-int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain)
-{
-       uint32_t i;
-       for(i = 0; i < ARRAY_SIZE(lnagain)/2; ++i) {
-               if(lnagain[i*2] == gain) {
-                       e4k_reg_set_mask(e4k, E4K_REG_GAIN1, 0xf, lnagain[i*2+1]);
-                       return gain;
-               }
-       }
-       return -EINVAL;
-}
-
-int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain)
-{
-       uint32_t i;
-       for(i = 0; i < ARRAY_SIZE(enhgain); ++i) {
-               if(enhgain[i] == gain) {
-                       e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (i << 1));
-                       return gain;
-               }
-       }
-       e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);
-
-       /* special case: 0 = off*/
-       if(0 == gain)
-               return 0;
-       else
-               return -EINVAL;
-}
-
-int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual)
-{
-       if (manual) {
-               /* Set LNA mode to manual */
-               e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL);
-
-               /* Set Mixer Gain Control to manual */
-               e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
-       } else {
-               /* Set LNA mode to auto */
-               e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_IF_SERIAL_LNA_AUTON);
-               /* Set Mixer Gain Control to auto */
-               e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 1);
-
-               e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0);
-       }
-
-       return 0;
-}
-
-static int find_stage_gain(uint8_t stage, int8_t val)
-{
-       const int8_t *arr;
-       int i;
-
-       if (stage >= ARRAY_SIZE(if_stage_gain))
-               return -EINVAL;
-
-       arr = if_stage_gain[stage];
-
-       for (i = 0; i < if_stage_gain_len[stage]; i++) {
-               if (arr[i] == val)
-                       return i;
-       }
-       return -EINVAL;
-}
-
-/*! \brief Set the gain of one of the IF gain stages
- *  \param [e4k] handle to the tuner chip
- *  \param [stage] number of the stage (1..6)
- *  \param [value] gain value in dB
- *  \returns 0 on success, negative in case of error
- */
-int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value)
-{
-       int rc;
-       uint8_t mask;
-       const struct reg_field *field;
-
-       rc = find_stage_gain(stage, value);
-       if (rc < 0)
-               return rc;
-
-       /* compute the bit-mask for the given gain field */
-       field = &if_stage_gain_regs[stage];
-       mask = width2mask[field->width] << field->shift;
-
-       return e4k_reg_set_mask(e4k, field->reg, mask, rc << field->shift);
-}
-
-int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value)
-{
-       uint8_t bit;
-
-       switch (value) {
-       case 4:
-               bit = 0;
-               break;
-       case 12:
-               bit = 1;
-               break;
-       default:
-               return -EINVAL;
-       }
-
-       return e4k_reg_set_mask(e4k, E4K_REG_GAIN2, 1, bit);
-}
-
-int e4k_commonmode_set(struct e4k_state *e4k, int8_t value)
-{
-       if(value < 0)
-               return -EINVAL;
-       else if(value > 7)
-               return -EINVAL;
-
-       return e4k_reg_set_mask(e4k, E4K_REG_DC7, 7, value);
-}
-
-/***********************************************************************
- * DC Offset */
-
-int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange)
-{
-       int res;
-
-       if((iofs < 0x00) || (iofs > 0x3f))
-               return -EINVAL;
-       if((irange < 0x00) || (irange > 0x03))
-               return -EINVAL;
-       if((qofs < 0x00) || (qofs > 0x3f))
-               return -EINVAL;
-       if((qrange < 0x00) || (qrange > 0x03))
-               return -EINVAL;
-
-       res = e4k_reg_set_mask(e4k, E4K_REG_DC2, 0x3f, iofs);
-       if(res < 0)
-               return res;
-
-       res = e4k_reg_set_mask(e4k, E4K_REG_DC3, 0x3f, qofs);
-       if(res < 0)
-               return res;
-
-       res = e4k_reg_set_mask(e4k, E4K_REG_DC4, 0x33, (qrange << 4) | irange);
-       return res;
-}
-
-/*! \brief Perform a DC offset calibration right now
- *  \param [e4k] handle to the tuner chip
- */
-int e4k_dc_offset_calibrate(struct e4k_state *e4k)
-{
-       /* make sure the DC range detector is enabled */
-       e4k_reg_set_mask(e4k, E4K_REG_DC5, E4K_DC5_RANGE_DET_EN, E4K_DC5_RANGE_DET_EN);
-
-       return e4k_reg_write(e4k, E4K_REG_DC1, 0x01);
-}
-
-
-static const int8_t if_gains_max[] = {
-       0, 6, 9, 9, 2, 15, 15
-};
-
-struct gain_comb {
-       int8_t mixer_gain;
-       int8_t if1_gain;
-       uint8_t reg;
-};
-
-static const struct gain_comb dc_gain_comb[] = {
-       { 4,  -3, 0x50 },
-       { 4,   6, 0x51 },
-       { 12, -3, 0x52 },
-       { 12,  6, 0x53 },
-};
-
-#define TO_LUT(offset, range)  (offset | (range << 6))
-
-int e4k_dc_offset_gen_table(struct e4k_state *e4k)
-{
-       uint32_t i;
-
-       /* FIXME: read ont current gain values and write them back
-        * before returning to the caller */
-
-       /* disable auto mixer gain */
-       e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
-
-       /* set LNA/IF gain to full manual */
-       e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
-                        E4K_AGC_MOD_SERIAL);
-
-       /* set all 'other' gains to maximum */
-       for (i = 2; i <= 6; i++)
-               e4k_if_gain_set(e4k, i, if_gains_max[i]);
-
-       /* iterate over all mixer + if_stage_1 gain combinations */
-       for (i = 0; i < ARRAY_SIZE(dc_gain_comb); i++) {
-               uint8_t offs_i, offs_q, range, range_i, range_q;
-
-               /* set the combination of mixer / if1 gain */
-               e4k_mixer_gain_set(e4k, dc_gain_comb[i].mixer_gain);
-               e4k_if_gain_set(e4k, 1, dc_gain_comb[i].if1_gain);
-
-               /* perform actual calibration */
-               e4k_dc_offset_calibrate(e4k);
-
-               /* extract I/Q offset and range values */
-               offs_i = e4k_reg_read(e4k, E4K_REG_DC2) & 0x3f;
-               offs_q = e4k_reg_read(e4k, E4K_REG_DC3) & 0x3f;
-               range  = e4k_reg_read(e4k, E4K_REG_DC4);
-               range_i = range & 0x3;
-               range_q = (range >> 4) & 0x3;
-
-               fprintf(stderr, "[E4K] Table %u I=%u/%u, Q=%u/%u\n",
-                       i, range_i, offs_i, range_q, offs_q);
-
-               /* write into the table */
-               e4k_reg_write(e4k, dc_gain_comb[i].reg,
-                             TO_LUT(offs_q, range_q));
-               e4k_reg_write(e4k, dc_gain_comb[i].reg + 0x10,
-                             TO_LUT(offs_i, range_i));
-       }
-
-       return 0;
-}
-
-/***********************************************************************
- * Initialization */
-
-static int magic_init(struct e4k_state *e4k)
-{
-       e4k_reg_write(e4k, 0x7e, 0x01);
-       e4k_reg_write(e4k, 0x7f, 0xfe);
-       e4k_reg_write(e4k, 0x82, 0x00);
-       e4k_reg_write(e4k, 0x86, 0x50); /* polarity A */
-       e4k_reg_write(e4k, 0x87, 0x20);
-       e4k_reg_write(e4k, 0x88, 0x01);
-       e4k_reg_write(e4k, 0x9f, 0x7f);
-       e4k_reg_write(e4k, 0xa0, 0x07);
-
-       return 0;
-}
-
-/*! \brief Initialize the E4K tuner
- */
-int e4k_init(struct e4k_state *e4k)
-{
-       /* make a dummy i2c read or write command, will not be ACKed! */
-       e4k_reg_read(e4k, 0);
-
-       /* Make sure we reset everything and clear POR indicator */
-       e4k_reg_write(e4k, E4K_REG_MASTER1,
-               E4K_MASTER1_RESET |
-               E4K_MASTER1_NORM_STBY |
-               E4K_MASTER1_POR_DET
-       );
-
-       /* Configure clock input */
-       e4k_reg_write(e4k, E4K_REG_CLK_INP, 0x00);
-
-       /* Disable clock output */
-       e4k_reg_write(e4k, E4K_REG_REF_CLK, 0x00);
-       e4k_reg_write(e4k, E4K_REG_CLKOUT_PWDN, 0x96);
-
-       /* Write some magic values into registers */
-       magic_init(e4k);
-#if 0
-       /* Set common mode voltage a bit higher for more margin 850 mv */
-       e4k_commonmode_set(e4k, 4);
-
-       /* Initialize DC offset lookup tables */
-       e4k_dc_offset_gen_table(e4k);
-
-       /* Enable time variant DC correction */
-       e4k_reg_write(e4k, E4K_REG_DCTIME1, 0x01);
-       e4k_reg_write(e4k, E4K_REG_DCTIME2, 0x01);
-#endif
-
-       /* Set LNA mode to manual */
-       e4k_reg_write(e4k, E4K_REG_AGC4, 0x10); /* High threshold */
-       e4k_reg_write(e4k, E4K_REG_AGC5, 0x04); /* Low threshold */
-       e4k_reg_write(e4k, E4K_REG_AGC6, 0x1a); /* LNA calib + loop rate */
-
-       e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK,
-               E4K_AGC_MOD_SERIAL);
-
-       /* Set Mixer Gain Control to manual */
-       e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0);
-
-#if 0
-       /* Enable LNA Gain enhancement */
-       e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7,
-                        E4K_AGC11_LNA_GAIN_ENH | (2 << 1));
-
-       /* Enable automatic IF gain mode switching */
-       e4k_reg_set_mask(e4k, E4K_REG_AGC8, 0x1, E4K_AGC8_SENS_LIN_AUTO);
-#endif
-
-       /* Use auto-gain as default */
-       e4k_enable_manual_gain(e4k, 0);
-
-       /* Select moderate gain levels */
-       e4k_if_gain_set(e4k, 1, 6);
-       e4k_if_gain_set(e4k, 2, 0);
-       e4k_if_gain_set(e4k, 3, 0);
-       e4k_if_gain_set(e4k, 4, 0);
-       e4k_if_gain_set(e4k, 5, 9);
-       e4k_if_gain_set(e4k, 6, 9);
-
-       /* Set the most narrow filter we can possibly use */
-       e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_MIX, KHZ(1900));
-       e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_RC, KHZ(1000));
-       e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_CHAN, KHZ(2150));
-       e4k_if_filter_chan_enable(e4k, 1);
-
-       /* Disable time variant DC correction and LUT */
-       e4k_reg_set_mask(e4k, E4K_REG_DC5, 0x03, 0);
-       e4k_reg_set_mask(e4k, E4K_REG_DCTIME1, 0x03, 0);
-       e4k_reg_set_mask(e4k, E4K_REG_DCTIME2, 0x03, 0);
-
-       return 0;
-}