#include "rtl_433.h" /* Documentation also at http://www.tfd.hu/tfdhu/files/wsprotocol/auriol_protocol_v20.pdf * Message Format: (9 nibbles, 36 bits): * Please note that bytes need to be reversed before processing! * * Format for Temperature Humidity * AAAAAAAA BBBB CCCC CCCC CCCC DDDDDDDD EEEE * RC Type Temperature___ Humidity Checksum * A = Rolling Code / Device ID * Device ID: AAAABBAA BB is used for channel, base channel is 01 * When channel selector is used, channel can be 10 (2) and 11 (3) * B = Message type (xyyz = temp/humidity if yy <> '11') else wind/rain sensor * x indicates battery status (0 normal, 1 voltage is below ~2.6 V) * z 0 indicates regular transmission, 1 indicates requested by pushbutton * C = Temperature (two's complement) * D = Humidity BCD format * E = Checksum * * Format for Rain * AAAAAAAA BBBB CCCC DDDD DDDD DDDD DDDD EEEE * RC Type Rain Checksum * A = Rolling Code /Device ID * B = Message type (xyyx = NON temp/humidity data if yy = '11') * C = fixed to 1100 * D = Rain (bitvalue * 0.25 mm) * E = Checksum * * Format for Windspeed * AAAAAAAA BBBB CCCC CCCC CCCC DDDDDDDD EEEE * RC Type Windspd Checksum * A = Rolling Code * B = Message type (xyyx = NON temp/humidity data if yy = '11') * C = Fixed to 1000 0000 0000 * D = Windspeed (bitvalue * 0.2 m/s, correction for webapp = 3600/1000 * 0.2 * 100 = 72) * E = Checksum * * Format for Winddirection & Windgust * AAAAAAAA BBBB CCCD DDDD DDDD EEEEEEEE FFFF * RC Type Winddir Windgust Checksum * A = Rolling Code * B = Message type (xyyx = NON temp/humidity data if yy = '11') * C = Fixed to 111 * D = Wind direction * E = Windgust (bitvalue * 0.2 m/s, correction for webapp = 3600/1000 * 0.2 * 100 = 72) * F = Checksum ********************************************************************************************* */ uint8_t reverse8(uint8_t x) { x = (x & 0xF0) >> 4 | (x & 0x0F) << 4; x = (x & 0xCC) >> 2 | (x & 0x33) << 2; x = (x & 0xAA) >> 1 | (x & 0x55) << 1; return x; } uint8_t bcd_decode8(uint8_t x) { return ((x & 0xF0) >> 4) * 10 + (x & 0x0F); } static int alectov1_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) { int temperature_before_dec; int temperature_after_dec; int16_t temp; uint8_t humidity, csum = 0, csum2 = 0; int i; if (bb[1][0] == bb[5][0] && bb[2][0] == bb[6][0] && (bb[1][4] & 0xf) == 0 && (bb[5][4] & 0xf) == 0 && (bb[5][0] != 0 && bb[5][1] != 0)) { for (i = 0; i < 4; i++) { uint8_t tmp = reverse8(bb[1][i]); csum += (tmp & 0xf) + ((tmp & 0xf0) >> 4); tmp = reverse8(bb[5][i]); csum2 += (tmp & 0xf) + ((tmp & 0xf0) >> 4); } csum = ((bb[1][1] & 0x7f) == 0x6c) ? (csum + 0x7) : (0xf - csum); csum2 = ((bb[5][1] & 0x7f) == 0x6c) ? (csum2 + 0x7) : (0xf - csum2); csum = reverse8((csum & 0xf) << 4); csum2 = reverse8((csum2 & 0xf) << 4); /* Quit if checksup does not work out */ if (csum != (bb[1][4] >> 4) || csum2 != (bb[5][4] >> 4)) { fprintf(stderr, "\nAlectoV1 CRC error"); return 0; } //Invalid checksum uint8_t wind = 0; if ((bb[1][1] & 0xe0) == 0x60) { wind = ((bb[1][1] & 0xf) == 0xc) ? 0 : 1; fprintf(stdout, "SENSOR:TYPE=ALECTO_%s,", wind ? "WIND" : "RAIN_GAUGE"); fprintf(stdout, "ID=%d,", reverse8(bb[1][0])); fprintf(stdout, "BUTTON=%d,", bb[1][1]&0x10 ? 1 : 0); fprintf(stdout, "BATTERY=%s,", bb[1][1]&0x80 ? "LOW" : "OK"); if (wind) { int skip = -1; /* Untested code written according to the specification, may not decode correctly */ if ((bb[1][1]&0xe) == 0x8 && bb[1][2] == 0) { skip = 0; } else if ((bb[1][1]&0xe) == 0xe) { skip = 4; } //According to supplied data! if (skip >= 0) { double speed = reverse8(bb[1 + skip][3]); double gust = reverse8(bb[5 + skip][3]); int direction = (reverse8(bb[5 + skip][2]) << 1) | (bb[5 + skip][1] & 0x1); fprintf(stdout, "WINDSPEED=%.0f,", speed); fprintf(stdout, "WINDGUST=%.0f,", gust); fprintf(stdout, "WINDDIRECTION=%.2i\n", direction); } } else { /* Untested code written according to the specification, may not decode correctly */ double rain_mm = (reverse8(bb[1][2]) + (reverse8(bb[1][3] << 8))) * 0.25; fprintf(stdout, "RAINFALL=%f\n", rain_mm); } } else if (bb[2][0] == bb[3][0] && bb[3][0] == bb[4][0] && bb[4][0] == bb[5][0] && bb[5][0] == bb[6][0] && (bb[3][4] & 0xf) == 0 && (bb[5][4] & 0xf) == 0) { //static char * temp_states[4] = {"stable", "increasing", "decreasing", "invalid"}; temp = (int16_t) ((uint16_t) (reverse8(bb[1][1]) >> 4) | (reverse8(bb[1][2]) << 4)); if ((temp & 0x800) != 0) { temp |= 0xf000; } temperature_before_dec = abs(temp / 10); temperature_after_dec = abs(temp % 10); humidity = bcd_decode8(reverse8(bb[1][3])); fprintf(stdout, "SENSOR:TYPE=ALECTO_TEMP,"); fprintf(stdout, "ID=%d,", reverse8(bb[1][0])); fprintf(stdout, "CHANNEL== %d,", (bb[1][0] & 0xc) >> 2); fprintf(stdout, "BUTTON=%d,", bb[1][1]&0x10 ? 1 : 0); fprintf(stdout, "BATTERY=%s,", bb[1][1]&0x80 ? "Low" : "OK"); fprintf(stdout, "TEMP=%s%d.%d,", temp < 0 ? "-" : "", temperature_before_dec, temperature_after_dec); fprintf(stdout, "HUMIDITY=%d\n", humidity); } fprintf(stderr, "Checksum = %01x (calculated %01x)\n", bb[1][4] >> 4, csum); fprintf(stderr, "Received Data = %02x %02x %02x %02x %02x\n", bb[1][0], bb[1][1], bb[1][2], bb[1][3], bb[1][4]); if (wind) fprintf(stderr, "Rcvd Data 2 = %02x %02x %02x %02x %02x\n", bb[5][0], bb[5][1], bb[5][2], bb[5][3], bb[5][4]); /* * fprintf(stderr, "L2M: %02x %02x %02x %02x %02x\n",reverse8(bb[1][0]),reverse8(bb[1][1]),reverse8(bb[1][2]),reverse8(bb[1][3]),reverse8(bb[1][4])); */ if (debug_output) debug_callback(bb, bits_per_row); return 1; } return 0; } //Timing based on 250000 r_device alectov1 = { /* .id = */ 13, /* .name = */ "AlectoV1 Weather Sensor", /* .modulation = */ OOK_PWM_D, /* .short_limit = */ 3500 / 4, //875 /* .long_limit = */ 7000 / 4, //1750 /* .reset_limit = */ 15000 / 4, //3750 /* .json_callback = */ &alectov1_callback, };