#include "rtl_433.h" // ** Acurite 5n1 functions ** const float acurite_winddirections[] = { 337.5, 315.0, 292.5, 270.0, 247.5, 225.0, 202.5, 180, 157.5, 135.0, 112.5, 90.0, 67.5, 45.0, 22.5, 0.0 }; static int acurite_raincounter = 0; static int acurite_crc(uint8_t row[BITBUF_COLS], int cols) { // sum of first n-1 bytes modulo 256 should equal nth byte int i; int sum = 0; for ( i=0; i < cols; i++) sum += row[i]; if ( sum % 256 == row[cols] ) return 1; else return 0; } static int acurite_detect(uint8_t *pRow) { int i; if ( pRow[0] != 0x00 ) { // invert bits due to wierd issue for (i = 0; i < 8; i++) pRow[i] = ~pRow[i] & 0xFF; pRow[0] |= pRow[8]; // fix first byte that has mashed leading bit if (acurite_crc(pRow, 7)) return 1; // passes crc check } return 0; } static float acurite_getTemp (uint8_t highbyte, uint8_t lowbyte) { // range -40 to 158 F int highbits = (highbyte & 0x0F) << 7 ; int lowbits = lowbyte & 0x7F; int rawtemp = highbits | lowbits; float temp = (rawtemp - 400) / 10.0; return temp; } static int acurite_getWindSpeed (uint8_t highbyte, uint8_t lowbyte) { // range: 0 to 159 kph // TODO: sensor does not seem to be in kph, e.g., // a value of 49 here was registered as 41 kph on base unit // value could be rpm, etc which may need (polynomial) scaling factor?? int highbits = ( highbyte & 0x1F) << 3; int lowbits = ( lowbyte & 0x70 ) >> 4; int speed = highbits | lowbits; return speed; } static float acurite_getWindDirection (uint8_t byte) { // 16 compass points, ccw from (NNW) to 15 (N) int direction = byte & 0x0F; return acurite_winddirections[direction]; } static int acurite_getHumidity (uint8_t byte) { // range: 1 to 99 %RH int humidity = byte & 0x7F; return humidity; } static int acurite_getRainfallCounter (uint8_t hibyte, uint8_t lobyte) { // range: 0 to 99.99 in, 0.01 in incr., rolling counter? int raincounter = ((hibyte & 0x7f) << 7) | (lobyte & 0x7F); return raincounter; } static int acurite5n1_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS],int16_t bits_per_row[BITBUF_ROWS]) { // acurite 5n1 weather sensor decoding for rtl_433 // Jens Jensen 2014 int i; uint8_t *buf = NULL; // run through rows til we find one with good crc (brute force) for (i=0; i < BITBUF_ROWS; i++) { if (acurite_detect(bb[i])) { buf = bb[i]; break; // done } } if (buf) { // decode packet here fprintf(stdout, "SENSOR:TYPE=ACURITE_5IN1,"); if (debug_output) { for (i=0; i < 8; i++) fprintf(stderr, "%02X ", buf[i]); fprintf(stderr, "CRC OK\n"); } if ((buf[2] & 0x0F) == 1) { // wind speed, wind direction, rainfall float rainfall = 0.00; int raincounter = acurite_getRainfallCounter(buf[5], buf[6]); if (acurite_raincounter > 0) { // track rainfall difference after first run rainfall = ( raincounter - acurite_raincounter ) * 0.01; } else { // capture starting counter acurite_raincounter = raincounter; } fprintf(stdout, "WINDSPEED=%d,", acurite_getWindSpeed(buf[3], buf[4])); fprintf(stdout, "WINDDIRECTION=%0.1f,", acurite_getWindDirection(buf[4])); fprintf(stdout, "RAINGAUGE=%0.2f\n", rainfall); } else if ((buf[2] & 0x0F) == 8) { // wind speed, temp, RH fprintf(stdout, "WINDSPEED=%d,", acurite_getWindSpeed(buf[3], buf[4])); fprintf(stdout, "TEMP=%2.1f,", acurite_getTemp(buf[4], buf[5])); fprintf(stdout, "HUMIDITY=%d\n", acurite_getHumidity(buf[6])); } } else { return 0; } if (debug_output) debug_callback(bb, bits_per_row); return 1; } static int acurite_rain_gauge_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) { // This needs more validation to positively identify correct sensor type, but it basically works if message is really from acurite raingauge and it doesn't have any errors if ((bb[0][0] != 0) && (bb[0][1] != 0) && (bb[0][2]!=0) && (bb[0][3] == 0) && (bb[0][4] == 0)) { float total_rain = ((bb[0][1]&0xf)<<8)+ bb[0][2]; total_rain /= 2; // Sensor reports number of bucket tips. Each bucket tip is .5mm fprintf(stdout, "SENSOR:TYPE=ACURITE_RAIN_GAUGE,RAIN=%2.1f\n", total_rain); fprintf(stderr, "Raw Message: %02x %02x %02x %02x %02x\n",bb[0][0],bb[0][1],bb[0][2],bb[0][3],bb[0][4]); return 1; } return 0; } static int acurite_th_detect(uint8_t *buf){ if(buf[5] != 0) return 0; uint8_t sum = (buf[0] + buf[1] + buf[2] + buf[3]) & 0xff; if(sum == 0) return 0; return sum == buf[4]; } static float acurite_th_temperature(uint8_t *s){ uint16_t shifted = (((s[1] & 0x0f) << 8) | s[2]) << 4; // Logical left shift return (((int16_t)shifted) >> 4) / 10.0; // Arithmetic right shift } static int acurite_th_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) { uint8_t *buf = NULL; int i; for(i = 0; i < BITBUF_ROWS; i++){ if(acurite_th_detect(bb[i])){ buf = bb[i]; break; } } if(buf){ fprintf(stdout, "SENSOR:TYPE=ACURITE_TEMP,"); fprintf(stdout, "TEMP=%.1f,", acurite_th_temperature(buf)); fprintf(stderr, "HUMIDITY=%d\n", buf[3]); return 1; } return 0; } r_device acurite5n1 = { /* .id = */ 10, /* .name = */ "Acurite 5n1 Weather Station", /* .modulation = */ OOK_PWM_P, /* .short_limit = */ 70, /* .long_limit = */ 240, /* .reset_limit = */ 21000, /* .json_callback = */ &acurite5n1_callback, }; r_device acurite_rain_gauge = { /* .id = */ 11, /* .name = */ "Acurite 896 Rain Gauge", /* .modulation = */ OOK_PWM_D, /* .short_limit = */ 1744/4, /* .long_limit = */ 3500/4, /* .reset_limit = */ 5000/4, /* .json_callback = */ &acurite_rain_gauge_callback, }; r_device acurite_th = { /* .id = */ 12, /* .name = */ "Acurite Temperature and Humidity Sensor", /* .modulation = */ OOK_PWM_D, /* .short_limit = */ 300, /* .long_limit = */ 550, /* .reset_limit = */ 2500, /* .json_callback = */ &acurite_th_callback, };