3 /* Documentation also at http://www.tfd.hu/tfdhu/files/wsprotocol/auriol_protocol_v20.pdf
4 * Message Format: (9 nibbles, 36 bits):
5 * Please note that bytes need to be reversed before processing!
7 * Format for Temperature Humidity
8 * AAAAAAAA BBBB CCCC CCCC CCCC DDDDDDDD EEEE
9 * RC Type Temperature___ Humidity Checksum
10 * A = Rolling Code / Device ID
11 * Device ID: AAAABBAA BB is used for channel, base channel is 01
12 * When channel selector is used, channel can be 10 (2) and 11 (3)
13 * B = Message type (xyyz = temp/humidity if yy <> '11') else wind/rain sensor
14 * x indicates battery status (0 normal, 1 voltage is below ~2.6 V)
15 * z 0 indicates regular transmission, 1 indicates requested by pushbutton
16 * C = Temperature (two's complement)
17 * D = Humidity BCD format
21 * AAAAAAAA BBBB CCCC DDDD DDDD DDDD DDDD EEEE
22 * RC Type Rain Checksum
23 * A = Rolling Code /Device ID
24 * B = Message type (xyyx = NON temp/humidity data if yy = '11')
26 * D = Rain (bitvalue * 0.25 mm)
29 * Format for Windspeed
30 * AAAAAAAA BBBB CCCC CCCC CCCC DDDDDDDD EEEE
31 * RC Type Windspd Checksum
33 * B = Message type (xyyx = NON temp/humidity data if yy = '11')
34 * C = Fixed to 1000 0000 0000
35 * D = Windspeed (bitvalue * 0.2 m/s, correction for webapp = 3600/1000 * 0.2 * 100 = 72)
38 * Format for Winddirection & Windgust
39 * AAAAAAAA BBBB CCCD DDDD DDDD EEEEEEEE FFFF
40 * RC Type Winddir Windgust Checksum
42 * B = Message type (xyyx = NON temp/humidity data if yy = '11')
45 * E = Windgust (bitvalue * 0.2 m/s, correction for webapp = 3600/1000 * 0.2 * 100 = 72)
47 *********************************************************************************************
49 uint8_t reverse8(uint8_t x) {
50 x = (x & 0xF0) >> 4 | (x & 0x0F) << 4;
51 x = (x & 0xCC) >> 2 | (x & 0x33) << 2;
52 x = (x & 0xAA) >> 1 | (x & 0x55) << 1;
56 uint8_t bcd_decode8(uint8_t x) {
57 return ((x & 0xF0) >> 4) * 10 + (x & 0x0F);
60 static int alectov1_callback(uint8_t bb[BITBUF_ROWS][BITBUF_COLS], int16_t bits_per_row[BITBUF_ROWS]) {
61 int temperature_before_dec;
62 int temperature_after_dec;
64 uint8_t humidity, csum = 0, csum2 = 0;
66 if (bb[1][0] == bb[5][0] && bb[2][0] == bb[6][0] && (bb[1][4] & 0xf) == 0 && (bb[5][4] & 0xf) == 0
67 && (bb[5][0] != 0 && bb[5][1] != 0)) {
69 for (i = 0; i < 4; i++) {
70 uint8_t tmp = reverse8(bb[1][i]);
71 csum += (tmp & 0xf) + ((tmp & 0xf0) >> 4);
73 tmp = reverse8(bb[5][i]);
74 csum2 += (tmp & 0xf) + ((tmp & 0xf0) >> 4);
77 csum = ((bb[1][1] & 0x7f) == 0x6c) ? (csum + 0x7) : (0xf - csum);
78 csum2 = ((bb[5][1] & 0x7f) == 0x6c) ? (csum2 + 0x7) : (0xf - csum2);
80 csum = reverse8((csum & 0xf) << 4);
81 csum2 = reverse8((csum2 & 0xf) << 4);
82 /* Quit if checksup does not work out */
83 if (csum != (bb[1][4] >> 4) || csum2 != (bb[5][4] >> 4)) {
84 fprintf(stderr, "\nAlectoV1 CRC error");
91 if ((bb[1][1] & 0xe0) == 0x60) {
92 wind = ((bb[1][1] & 0xf) == 0xc) ? 0 : 1;
94 fprintf(stdout, "SENSOR:TYPE=ALECTO_%s,", wind ? "WIND" : "RAIN_GAUGE");
95 fprintf(stdout, "ID=%d,", reverse8(bb[1][0]));
96 fprintf(stdout, "BUTTON=%d,", bb[1][1]&0x10 ? 1 : 0);
97 fprintf(stdout, "BATTERY=%s,", bb[1][1]&0x80 ? "LOW" : "OK");
100 /* Untested code written according to the specification, may not decode correctly */
101 if ((bb[1][1]&0xe) == 0x8 && bb[1][2] == 0) {
103 } else if ((bb[1][1]&0xe) == 0xe) {
105 } //According to supplied data!
107 double speed = reverse8(bb[1 + skip][3]);
108 double gust = reverse8(bb[5 + skip][3]);
109 int direction = (reverse8(bb[5 + skip][2]) << 1) | (bb[5 + skip][1] & 0x1);
110 fprintf(stdout, "WINDSPEED=%.0f,", speed);
111 fprintf(stdout, "WINDGUST=%.0f,", gust);
112 fprintf(stdout, "WINDDIRECTION=%.2i\n", direction);
115 /* Untested code written according to the specification, may not decode correctly */
116 double rain_mm = (reverse8(bb[1][2]) + (reverse8(bb[1][3] << 8))) * 0.25;
117 fprintf(stdout, "RAINFALL=%f\n", rain_mm);
119 } else if (bb[2][0] == bb[3][0] && bb[3][0] == bb[4][0] && bb[4][0] == bb[5][0] &&
120 bb[5][0] == bb[6][0] && (bb[3][4] & 0xf) == 0 && (bb[5][4] & 0xf) == 0) {
121 //static char * temp_states[4] = {"stable", "increasing", "decreasing", "invalid"};
122 temp = (int16_t) ((uint16_t) (reverse8(bb[1][1]) >> 4) | (reverse8(bb[1][2]) << 4));
123 if ((temp & 0x800) != 0) {
126 temperature_before_dec = abs(temp / 10);
127 temperature_after_dec = abs(temp % 10);
128 humidity = bcd_decode8(reverse8(bb[1][3]));
129 fprintf(stdout, "SENSOR:TYPE=ALECTO_TEMP,");
130 fprintf(stdout, "ID=%d,", reverse8(bb[1][0]));
131 fprintf(stdout, "CHANNEL== %d,", (bb[1][0] & 0xc) >> 2);
132 fprintf(stdout, "BUTTON=%d,", bb[1][1]&0x10 ? 1 : 0);
133 fprintf(stdout, "BATTERY=%s,", bb[1][1]&0x80 ? "Low" : "OK");
134 fprintf(stdout, "TEMPERATURE=%s%d.%d,", temp < 0 ? "-" : "", temperature_before_dec, temperature_after_dec);
135 fprintf(stdout, "HUMIDITY=%d\n", humidity);
137 fprintf(stderr, "Checksum = %01x (calculated %01x)\n", bb[1][4] >> 4, csum);
139 fprintf(stderr, "Received Data = %02x %02x %02x %02x %02x\n", bb[1][0], bb[1][1], bb[1][2], bb[1][3], bb[1][4]);
140 if (wind) fprintf(stderr, "Rcvd Data 2 = %02x %02x %02x %02x %02x\n", bb[5][0], bb[5][1], bb[5][2], bb[5][3], bb[5][4]);
142 * fprintf(stderr, "L2M: %02x %02x %02x %02x %02x\n",reverse8(bb[1][0]),reverse8(bb[1][1]),reverse8(bb[1][2]),reverse8(bb[1][3]),reverse8(bb[1][4]));
145 debug_callback(bb, bits_per_row);
152 //Timing based on 250000
153 r_device alectov1 = {
155 /* .name = */ "AlectoV1 Weather Sensor",
156 /* .modulation = */ OOK_PWM_D,
157 /* .short_limit = */ 3500 / 4, //875
158 /* .long_limit = */ 7000 / 4, //1750
159 /* .reset_limit = */ 15000 / 4, //3750
160 /* .json_callback = */ &alectov1_callback,